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Abstract

Evolutionary algorithms based on probability models (EAPM) are algorithms

inspired by biological systems. The essential mechanism of EAPM consists

of both statistical estimation and Monte Carlo integration. By using the

two techniques, EAPM estimate the distribution of promising solutions and

generate samples from it.

This thesis improves the basic framework of EAPM in three directions.

First, this thesis proposes a technique for reusing the historical samples. The

difficulty of employing the historical samples is that simply selecting good

historical samples causes the bias of the statistical estimation. The proposed

method weights historical samples in terms of importance sampling for pos-

sibly and theoretically removing the bias. Second, this thesis focuses on the

convergence mechanism. In general EAPM, highly random sampling is em-

ployed in early stages, and the randomness is gradually decreased. Finally,

the sampler distribution converges a point. This mechanism involves the

problem of local optima. To overcome this problem, this thesis proposes

to mix samples with different randomness. In other words, highly random

sampling, slightly random sampling, and converged sampling are carried out

simultaneously and iteratively. The point is that highly random samples can

provide opportunities to escape from local optima. However, the difficulty

is to retrieve information from mixed samples. In the proposed method, im-

portance sampling with a mixture distribution plays an important role which

provides theoretical validity for retrieving information from mixed samples.

Third, this thesis proposes a novel convergence schedule. In EAPM, it is

important not only to control the convergence speed but also to determine

its speed. Actually, there is no convergence schedule with theoretical dis-

cussions. This thesis reveals the relationship between the randomness of the

target distribution (i.e., the ideal sampler distribution which guides where

samples should be generated) and the accuracy of the statistical estimation,
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that is, the entropy of the target distribution and the Fisher information. As

a result, we obtain an approximately optimal convergence schedule, where

the entropy of the target distribution is linearly reduced. This implies that

the algorithm converges in linear time for a problem with an exponential size

of the search space.

Consequently, this thesis theoretically and mathematically extends the

basic framework of EAPM in new two directions: (1)mixing current and

historical samples, and (2)mixing samples with different randomness. On

the other hand, the proposed convergence schedule is an essential element

of EAPM and the overall improvement can be expected. Through experi-

ments with discrete problems and continuous problems, the effectiveness of

each improvement is confirmed and the salient features are revealed: (1) em-

ploying historical samples overcomes the instability in statistical estimation,

(2) mixing randomness overcomes the problem of local optima, and (3) the

proposed convergence schedule is a practical method.
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Chapter 1

Introduction

1.1 Background

Nowadays, it has become easy to obtain enormous computational resources,

and one kind of the most interesting challenges is to apply computational

techniques towards complex problems. The computational optimization is an

effective and essential technique for dealing with complex problems. There

are many optimization methods such as branch and bound methods, gradient

methods, Newton methods, simulated annealing methods, and mean field

annealing methods.

Evolutionary algorithms (EAs) such as genetic algorithms (GAs) [9, 44]

are comparatively new optimization techniques. Since they have a relatively

short history, EAs have not been widely employed and the fundamental prin-

ciple have not been established yet. However, substantial studies on EAs

have been carried out energetically and they have steadily contributed to re-

veal the essential mechanism of EAs. Consequently, we have one promising

approach in sight now.

Actually, this approach have not possessed the official name and, in fact,

the official definition have not been established yet. At least, it has been

well confirmed that the essential key technique is statistical estimation. In

general, estimation of the cost function is important task in computational

optimization. For example, the Newton method predicts the cost function

by using Taylor expansion. On the other hand, in the focused approach,

statistical estimation predicts the structure of the cost function instead of

Taylor expansion. This is clearly new approach.

This approach attracted attentions for the first time when the works

1



1.2. Objectives and Contributions

of Mühlenbein [27, 29] appeared. It should be noted that there were similar

studies such as [1] before them. Methods inspired by this approach are called

estimation of distribution algorithms (EDAs). Actually, EDAs are intended

to be a mathematical model of GAs and someone call methods based on this

approach probabilistic model-building genetic algorithms (PMBGAs) [32].

Surprisingly, in a different field, that is, rare event simulation, a similar

approach is proposed by Rubinstein as one of the Monte Carlo integration

techniques and named the cross entropy method (CE) [40]. Currently, it

has become well known that the three different names share the common

and essential concept, that is, statistical estimation of the distribution of

promising solutions, and the common name, evolutionary algorithms based

on probability models (EAPM), is proposed in the congress on evolutionary

computation (CEC) in 2007. This thesis uses this name.

One advantage of EAPM to other EAs is the mathematical definition of

the algorithms. In EAPM, an objective is statistically estimation of promis-

ing solutions from the past samples. This problem setting can be defined

mathematically and we can develop EAPM in theoretical manners. Recent

studies on EAPM [20] mainly improve the statistical estimation, for example,

employing complex probability models such as Bayesian networks.

1.2 Objectives and Contributions

The essential mechanism of EAPM consists of two techniques: statistical

estimation and additionally Monte Carlo integration (MCI). Statistical es-

timation plays the central role in EAPM. On the other hand, MCI has an

effect on the estimation accuracy. This thesis focuses not on the aspect of

statistical estimation but on the aspect of Monte Carlo integration, whereas

almost studies on EAPM focuses on statistical estimation methods.

This thesis improves the Monte Carlo integration of EAPM in three di-

rections. First, this thesis proposes a novel technique, resampling population

model (RPM), for reusing the historical samples. The difficulty of employing

the historical samples is that simply selecting good historical samples causes

the bias of the statistical estimation. RPM weights the historical samples in

terms of importance sampling for possibly removing the bias.

Second, this thesis focuses on the convergence mechanism. In general

EAPM, highly random sampling is employed in early stages, and the ran-
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1.2. Objectives and Contributions

domness is gradually decreased. Finally, the sampler distribution converges a

point. This mechanism involves the problem of local optima because there is

no opportunity to escape from local optima after convergence. To overcome

this problem, this thesis proposes a novel method, hierarchical importance

sampling (HIS) which mixes samples with different randomness. In other

words, highly random sampling, slightly random sampling, and converged

sampling are carried out simultaneously. Higher randomness contributes to

escape from local optima and, in this method, high randomness is employed

at all stages. The difficulty is to retrieve information from mixed samples.

HIS overcomes this difficulty by using importance sampling with a mixture

distribution. By using this technique, information can be retrieved from

mixed samples in a theoretically valid manner. This method is also related

to multi-start method.

Third, this thesis proposes a novel convergence schedule. In EAPM, it is

important not only to control the convergence speed but also to determine its

speed. Actually, there is no convergence schedule with theoretical discussions.

This thesis reveals the relationship between the randomness of the target

distribution (i.e., the ideal sampler distribution which guides where samples

should be generated) and the accuracy of the statistical estimation, that

is, the entropy of the target distribution and the Fisher information. As a

result, we obtain an approximately optimal convergence schedule , entropy

reduction schedule (ERS), where the entropy of the target distribution is

linearly reduced. This implies that the algorithm converges in linear time for

a problem with an exponential size of the search space.

Consequently, this thesis extends the basic framework of EAPM in new

two directions: (1)mixing current and historical samples, and (2)mixing sam-

ples with different randomness. On the other hand, the convergence sched-

ule is an essential element of EAPM and the overall improvement can be

expected. The brief relationship is shown in Fig. 1.1. The aim of this thesis

is to confirm the effectiveness of each improvement through experiments and

additionally, with advanced benchmark problems such as Rosenbrock and

Rastrigin function, to reveal comprehensive properties of RPM and HIS: (1)

RPM has the robustness against the instability of the statistical estimation

and (2) HIS has the robustness against local optima.

3



1.3. Outline

Figure 1.1: Relationship among the proposed methods.

1.3 Outline

This thesis is organized as follows: Chapter 2 introduces basic knowledge

such as computational optimization, Monte Carlo integration and statistical

estimation, and Chapter 3 explains the basics of EAPM. Chapter 4 describes

a method for using the historical samples. Chapter 5 describes a hierarchi-

cally control of the randomness of generated samples. Chapter 6 describes

a novel convergence schedule and its theoretical aspect. Chapter 7 conducts

advanced experiments to investigate comprehensive properties of RPM and

HIS through discrete and continuous problems. Chapter 8 summarizes the

results and concludes this thesis.
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Chapter 2

Preliminaries

This chapter introduces the essential knowledges for understanding EAPM.

2.1 Computational Optimization

The objective of the optimization problem is to find the solution x which

minimizes or maximizes the cost function f(x) (also called the objective

function) under the constraint x ∈ S. In this thesis, x is supposed to be

a continuous or discrete vector. This thesis considers only minimization

problems without loss of generality and does not consider the difficulty of

the constraints.

As we know, in some simple problems, the optimum solution can be

easily found by hand calculation. For example, it is clearly easy to minimize

f(x) = ax2 + bx+ c, where a, b, c, x ∈ R and 0 < a. This easiness comes from

some basic properties of the cost function, for example, convexity, continuity,

and differentiability.

In other cases, for example, where the derivative cannot be obtained or

convexity is not guaranteed, optimization becomes difficult. For these types

of optimization problems, computational methods are effective. The simplest

method is the hill-climbing method (also called the local search), where a

sequence of solutions, x1, x2, · · · , xn, is generated such that f(x1) > f(x2) >

· · · > f(xn). In the algorithm, first, the initial solution x1 is generated

randomly and is updated iteratively. In update steps, small difference ∆x is

somehow generated, for example, by using gradient, and if f(xt+∆x) < f(xt)

then the current solution is basically updated as xt+1 = xt + ∆x.
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2.2. Monte Carlo Integration (MCI)

In hill-climbing methods, the presence of local optima is the serious prob-

lem. The local optima is defined as follows:

{x∗|f(x∗) < f(x), ∀x s.t. |x∗ − x| < |ε| }, (2.1)

where |ε| is a small value. Clearly, hill-climbing methods can find a local

optimum, but there is no guarantee that the obtained solution is the global

optimum.

2.2 Monte Carlo Integration (MCI)

2.2.1 Basics of MCI

For an arbitrary function g(x) and an arbitrary probability distribution q(x),

MCI can approximately calculate

I =
∫

q(x)g(x) dx (2.2)

as follows:

Î =
1

M

∑
q(x)

g(xi), (2.3)

where
∑

q(x) denotes summation over the samples generated from q(x), and

M is the number of the samples. Especially, if M → ∞ then Î → I. This is

well known fact as the law of large numbers.

The speed to approach to the true value is important. This can be asymp-

totically discussed by the central limit theorem [22], which says that

lim
M→∞

√
M(Î − I) → N(0, σ2), in distribution, (2.4)

where N(u, σ2) is a Gaussian distribution with the mean u and the variance

σ2; σ2 = Var[g(x)]q(x) and Var[·]q(x) denotes the variance of the random

variable with respect to q(x). In other words, the average squared error

E[(Î − I)2] with M number of samples is given by

E[(Î − I)2] =
σ2

M
, (2.5)

where E[·] denotes the expectation.
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2.2. Monte Carlo Integration (MCI)

2.2.2 Importance Sampling

In general, it can be difficult to directly generate samples from the probability

distribution of interest and instead we have samples from another probability

distribution. In this case, importance sampling is useful. In importance

sampling, I of (2.2) is redefined as follows:

I =
∫

p(x)
q(x)

p(x)
g(x) dx, (2.6)

where p(x) is the sampler distribution. MCI is carried out as

ÎIS =
1

M

∑
p(x)

q(x)

p(x)
g(xi). (2.7)

Another application of importance sampling is shown as follows:∫
g(x) dx =

∫
p(x)

g(x)

p(x)
dx (2.8)

' 1

M

∑
p(x)

g(xi)

p(x)
. (2.9)

Also in these cases, the error can be assessed by the same way as (2.5) with

σ2 = Var[ q(x)
p(x)

f(x)]p(x). The point is that the sampler distribution p(x) has an

effect on the error. In other words, the error can be controlled by changing

p(x).

In practice, normalized importance sampling is useful. Normalized im-

portance sampling estimator is given by

ÎNIS =
1∑

p(x)
q(x)
p(x)

∑
p(x)

q(x)

p(x)
g(xi) (2.10)

=
1∑

p(x)
q̃(x)
p̃(x)

∑
p(x)

q̃(x)

p̃(x)
g(xi), (2.11)

where p̃(x) and q̃(x) are proportional to p(x) and q(x), respectively. The

advantage of this method is that we can replace p(x) and q(x) with their

proportional value p̃(x) and q̃(x), respectively. The validity of this calculation

is confirmed by the following equations:

1 =
∫ q(x)

p(x)
p(x) dx (2.12)
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2.3. Statistical Estimation

' 1

M

∑
p(x)

q(x)

p(x)
(2.13)

=
1

M

Zp

Zq

∑
p(x)

q̃(x)

p̃(x)
, (2.14)

1∑
p(x)

q̃(x)
p̃(x)

' 1

M

Zp

Zq

, (2.15)

where Zp =
∫

p̃(x) dx and Zq =
∫

q̃(x) dx are the normalizing constants of

p̃(x) and q̃(x), respectively. Note that importance sampling estimator is

unbiased, but normalizing importance sampling estimator is biased. This

can be described as

E[ÎIS] = I (2.16)

and

E[ÎNIS] 6= I. (2.17)

2.3 Statistical Estimation

Statistical estimation is a task to estimate the probability distribution which

underlies the given data. For example, observing the data D = {xi} which are

generated according to a probability distribution q(x), we make a probability

distribution p(x) which predicts q(x). In this thesis, q(x) represents the

distribution of interest and is called the target distribution. On the other

hand, p(x) represents a probability model which is controlled to approximate

the target distribution.

2.3.1 Kullback-Leibler Divergence

The most popular statistical estimation framework is one based on the Kullback-

Leibler (KL) divergence, which is defined by

DKL(q ‖ p) =
∫

q(x) log
q(x)

p(x)
(2.18)

=
∫

q(x) log q(x) dx −
∫

q(x) log p(x) dx. (2.19)

KL divergence is a measure of the distance between two probability distri-

bution but not symmetric. It can be easily confirmed that if the two distri-

butions are the same KL divergence becomes zero. In this framework, the
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2.3. Statistical Estimation

objective of statistical estimation is to select p(x) which minimizes KL diver-

gence by using the given samples. Since q(x) is unknown or
∫

q(x) log p(x) dx

is difficult to calculate in practice, it is impossible to directly minimize KL

divergence. Hence, some approximation methods are proposed, and the next

section introduce one.

2.3.2 Maximum Likelihood Estimation

Maximum likelihood (ML) method is one of the practical methods for sta-

tistical estimation. In ML estimation, we find p(x) which maximizes the

empirical log-likelihood defined by

L(p(x)) =
∑
q(x)

log p(x). (2.20)

In this thesis, the empirical log-likelihood is redefined by∫
q(x) log p(x) dx ' 1

M

∑
q(x)

log p(x), (2.21)

where M is the number of the given samples. (2.20) and (2.21) are equiv-

alent in finding p(x) which maximizes them. It is clear that maximizing

the empirical log-likelihood approximately minimizes the KL divergence. In

practice, we use a parametrized probability distribution p(x|w) for the prob-

ability model p(x). Hence, in ML estimation, we find the parameter w which

minimizes the empirical log-likelihood.

If the given data are generated from a different distribution r(x) instead of

q(x), the empirical likelihood can be calculated through importance sampling

as follows: ∫
r(x)

q(x)

r(x)
log p(x) dx ' 1

M

∑
r(x)

q(x)

r(x)
log p(x). (2.22)

This type of problems is referred to as covariate shift [42].

2.3.3 Related Topics

Another example of KL divergence based statistical method is Bayes estima-

tion. Readers who looks for better estimation methods like Bayes estima-

tion, [2] becomes a good guide. Someone interested in minimizing DKL(p, q)

(q and p are exchanged) instead of DKL(q, p), can find an approximation

framework named mean field approach in [30]. Actually, EAPM has a rela-

tionship to mean field approach.
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Chapter 3

Evolutionary Algorithms Based
on Probability Models

3.1 Overview

In some optimization methods, estimation of the cost function is important.

For example, the Newton method estimate the cost function via approximat-

ing it by a quadratic function through Taylor expansion. The mean field

annealing approximates the cost function through the mean field technique.

Actually, EAPM are optimization methods which estimate the cost function

in statistical manners.

The basic concept of EAPM is estimation of the distribution of promising

solutions. For this purpose, the cost function is transformed to a probabil-

ity distribution, which is called the target distribution. It is assumed that

samples generated from the target distribution tend to be promising solu-

tions. EAPM make a probability model of the target distribution from the

past samples and generate samples from it. If we have a probability model

enough well approximating the target distribution, samples generated from

the probability model will be promising solutions.

EAPM can be seen as sampling method which approximately generate

samples from the target distribution. On the other hand, also Markov chain

Monte Carlo methods (MCMC) are well known as sampling methods. When

comparing EAPM with MCMC, the feature of EAPM is adaptively providing

the sampler distribution, whereas in MCMC, the sampler distribution have

to be designed by hand previously.

The optimization form of MCMC is well known as simulated annealing

10



3.2. Target distribution

(SA). There is the common concept to EAPM and SA. SA is started with

the target distribution with high diversity (i.e., randomness or entropy), and

then, the diversity is gradually decreased. This control method on the target

distribution is called the annealing. In optimization, the annealing leads

convergence. Actually, also EAPM employ the annealing.

To define the EAPM1, the following sections, introduce the three essential

concept: the target distributions, adaptive updating sampler distribution,

and, the annealing. Additionally, one practical method which slightly differ

from the EAPM is explained.

3.2 Target distribution

In the EAPM, the cost function is transformed to the target distribution

which guides where the samples should be generated. To define the target

distribution, there are two important features: (1) goodness and (2)random-

ness of the generated samples. The goodness means that the generated sam-

ples are preferred to have good cost function value. On the other hand, the

randomness, which can be defined by the entropy, means that the generated

samples are preferred to be distributed in the whole solution space. This is

because there may be exists better solutions if a good solution have already

been found. This is well known as the exploration/exploitation trade-off and

the target distribution has a parameter which control this trade-off. In the

following, two types of probability distributions are introduced.

3.2.1 Partially Uniform Distribution

The partially uniform distribution is the basic target distribution. It is de-

fined as follows:

q(x) =
1

Z
q̃(x) (3.1)

q̃(x) = I(f(x) < f̃)

=

{
1 f(x) < f̃
0 else

(3.2)

Z =
∫

q̃(x) dx, (3.3)

1Since there is no official definition of EAPM, this paper define “the EAPM”. On the
other hand, the word “EAPM” includes many similar algorithms. Note the difference
between “the EAPM” and “EAPM”.
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3.3. Adaptive Improvement of Sampler Distribution

where I()̇ is the indicator function, f̃ is the threshold parameter which control

the trade-off, and Z is the normalizing constant. Its entropy is given by

−
∫

q(x) log q(x) = log Z. (3.4)

3.2.2 Boltzmann Distribution

The Boltzmann distribution (also called Gibbs distribution) is a well known

probability distribution in statistical physics. The Boltzmann distribution is

defined as follows:

q(x) =
1

Z
q̃(x) (3.5)

q̃(x) = exp(−f(x)β) (3.6)

Z =
∫

q̃(x) dx, (3.7)

where β is a parameter called the inverse temperature, which controls the

trade-off.

The feature of the Boltzmann distribution is minimizing the free energy

defined by

F (q(x)) =
∫

q(x)βf(x) dx +
∫

q(x) log q(x) dx. (3.8)

This can be understood that Boltzmann distribution maximizes the entropy

and minimizes f(x).

3.3 Adaptive Improvement of Sampler Dis-

tribution

The objective of the EAPM is to generate samples approximately according

to the target distribution q(x). The basic approach of the EAPM is to build

a probability model of the target distribution by using ML estimation2. Let

pt−1(x) and pt(x) denote the sampler distribution and the probability model,

respectively. ML estimation is performed as follows:

pt(x) = argmax
p̂t(x)

1

M

∑ q(x)

pt−1(x)
log p̂t(x). (3.9)

2Obviously, we can use other methods such as Bayes estimation for building a proba-
bility model. However, currently, ML estimation is the best one in practice.
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3.4. Annealing

Naive EAPM

1 Initialization: Generate samples X(0)
samp = {xi}M

1 from the uniform
distribution p0(x). t ⇐ 1.

2 do{
3 Calculate the empirical log-likelihood according to (3.9) from

X(t−1)
samp .

4 Build a probability model pt(x).

5 Generate samples X(t)
samp from pt(x).

6 t ⇐ t + 1.

7 }until(stopping criterion reached)

Figure 3.1: The Pseudo-code of Naive EAPM.

Then, the samples are generated from the probability model pt(x). If q(x) and

pt(x) are enough similar, the obtained samples are approximately distributed

according to q(x).

The more similar q(x) and pt−1(x) are, the better ML estimation works.

Therefore, to generate samples from pt(x) and to built a new probability

model by using ML estimation may provide a better new probability model.

Hence, we can lead an algorithm which iteratively generates a probability

model by using samples generated from the previous probability model. In

this algorithm, it is expected that the built probability model is gradually

improved. This thesis call this algorithm the naive EAPM and the pseudo

code is shown in Fig. 3.1.

3.4 Annealing

The objective of the annealing is to reduce the variation of q(x)
pt−1(x)

in (3.9),

since if the variation is small, the importance sampling estimator becomes

good. For this purpose, the target distribution is changed.

In general annealing, the target distribution is started from the uniform

distribution and the randomness of the target distribution is gradually re-

duced. This is because it is difficult to build a probability model with less

randomness, which means generating better solutions. The annealing can

be easily employed by adding the procedure which changes the target dis-

tribution in each iteration of the naive EAPM. Hence, (3.9) is changed as

13



3.5. A Practical Approximation

The EAPM

1 Initialization: Generate samples X(0)
samp = {xi}M

1 from the uniform
distribution p0(x). t ⇐ 1.

2 do{
3 Determine the target distribution qt(x).

4 Calculate the empirical log-likelihood according to (3.9) from
X(t−1)

samp .

5 Build a probability model pt(x).

6 Generate samples X(t)
samp from pt(x).

7 t ⇐ t + 1.

8 }until(stopping criterion reached)

Figure 3.2: The Pseudo-code of the EAPM.

follows:

pt(x) = argmax
p̂t(x)

1

N

∑ qt(x)

pt−1(x)
log p̂t(x). (3.10)

The pseudo-code and an illustration are shown in Figs 3.2 and 3.3, respec-

tively. The control of the target distribution is discussed in Chapter 6. In this

thesis, this algorithm is called the EAPM or cross entropy method (CE) [40].

3.5 A Practical Approximation

Although the EAPM seems to work well theoretically, not in practice. The

reason can be that the variation of q(x)
pt−1(x)

in (3.10) becomes too big. To over-

come this problem, a slightly different method is often employed in practice.

This algorithm is called the estimation of distribution algorithm (EDA) in

this thesis.

The difference from the EAPM is that EDA does not use importance

sampling. Instead of (3.10), EDA performs

pt(x) = argmax
p̂t(x)

1

M

∑
I(f(x) < f̃t) log p̂t(x). (3.11)

This means that promising solutions are selected from the generated sam-

ples according to their cost function value and then the distribution of the

selected solutions are estimated. This selection manner is called the trun-

cation selection. (3.11) can be easily derived from (3.10) by supposing
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3.5. A Practical Approximation

Figure 3.3: Illustration of Annealing.

that pt−1(x) = qt−1(x), each qt(x) is a partially uniform distribution, and

ft−1 < ft. This implies that EDA assumes that pt−1(x) completely ap-

proximate qt−1(x). The pseudo-code is shown in Fig. 3.4. Experimental

comparisons between the EAPM and EDA are shown in Appendix A. The

experiments show that EDA outperforms the EAPM. However, this thesis

do not recommend3 this type of approximation and the proposed methods

in the following sections are extensions of the EAPM.

3This thesis recommends another form of (3.10) as follows:

pt(x) = argmax
p̂t(x)

1
N

∑ (
qt(x)

pt−1(x)

)r

log p̂t(x), (3.12)

where 0 ≤ r ≤ 1. This form is friendly to importance sampling and we can represent the
EDA by r = 0.
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3.5. A Practical Approximation

Estimation of Distribution Algorithm (EDA)

1 Initialization: Generate samples X(0)
samp = {xi}M

1 from the uniform
distribution p0(x). t ⇐ 1.

2 do{
3 Determine the threshold parameter ft.

4 Calculate the empirical log-likelihood according to (3.11) from
X(t−1)

samp .

5 Build a probability model pt(x) of X(t)
pop.

6 Generate samples X(t)
samp = {xi}M

1 from pt(x).

7 t ⇐ t + 1.

8 }until(stopping criterion reached)

Figure 3.4: The Pseudo-code of EDA.
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Chapter 4

Maintaining Historical Samples

4.1 Introduction

The accuracy of the statistical estimation depends on not only the way of

building probability models but also both the quality and the quantity of

the samples. From this viewpoint, one drawback of the current EAPM is

the absence of a population maintenance mechanism, where a part of the

historical samples are reused, whereas Genetic Algorithms (GAs) [9] have

used ones for a long time. In GAs, various population maintenance tech-

niques [43] were proposed and they are intuitively combined with EAPM

in some works, for example, Bayesian optimization algorithms (BOAs) [34],

hierarchical Bayesian optimization algorithm (hBOA), [33, 36, 37], and iter-

ated density estimation evolutionary algorithm (IDEA) [4, 5]. Indeed, they

break the mathematical structure of EAPM; EAPM are regarded as methods

building probability models approximating the target distributions, which

explicitly represent the distributions of promising solutions. In the heuristic

population mechanisms, the distribution of the population (i.e., the selected

historical samples) is normally unknown and the built probability model is

no longer related to the target distributions.

This chapter proposes a novel population maintenance method, resam-

pling population model (RPM) that maintains a part of the historical samples

such that they seem to follow the target distribution by weighting generated

samples. This implies that the probability model of the population approxi-

mates the target distribution. To control the size of the population, resam-

pling is employed. The aim of this chapter is to investigate the effectiveness

of RPM through experimental comparisons with conventional methods.
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4.2. Resampling Population Model (RPM)

4.2 Resampling Population Model (RPM)

The primary objective of RPM is to extend the calculation of (3.10) to using

not only the currently generated samples but also the population, that is, a

part of the historical samples. This implies that RPM is an extension of the

EAPM. If all the historical samples in all previous iterations are completely

maintained, according to importance sampling, the empirical log-likelihood

is given by

L ' 1

|X|
∑
X

qt+1(x)∑
i≤t αipi(x)

log pt+1(x), (4.1)

where X is a set of all the historical samples, which are generated from all

the built probability models and αi is the ratio of the number of the samples

generated from pi(x). 1 However, the secondary objective of RPM is to

control the size of the population. In other words, important samples are

selected and the remains are discarded.

In the following, first, the key calculation technique for weighting samples

is described in Section 4.2.1. Section 4.2.2 describes how RPM maintains

the population based on this technique. Finally, Section 4.2.3 describes the

details for implementation.

4.2.1 Weighted Samples Approximating Distribution

If a sample set X whose samples are generated from p(x) are given and their

weights are defined by

wi ∝
q(xi)

p(xi)
for xi ∈ X, (4.3)

then we define a probability distribution q̂(x) as follows:

q̂(x) =
1∑

X wi

∑
xj∈X

wiδ(x − xi), (4.4)

1If all the historical samples from the k previous iterations are completely maintained,
according to importance sampling, the empirical log-likelihood is given by

L ' 1
|X|

∑
X

qt+1(x)∑
t−k≤i≤t αipi(x)

log pt+1(x), (4.2)

where X is a set of all the historical samples, which are generated from all the built
probability models and αi is the ratio of the number of the samples generated from pi(x).
This method may be practical, but we cannot control which samples are maintained in
this way. Therefore, this is out of scope.
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4.2. Resampling Population Model (RPM)

where δ(·) is the delta function. The expectation of any function f(x) with

respect to q̂(x) is exactly given by∫
q̂(x)f(x)dx =

1∑
X wj

∑
X

wif(xi). (4.5)

This is equivalent to normalized importance sampling.

Let us assume wi = q(xi)
p(xi)

. Then, the expectation of
∑

X wi is the number

of samples in X, that is, E[
∑

X wi] = |X|. Especially, if
∑

X wi = |X|,
(4.5) reduces to normal importance sampling. Hence, we can regard q̂(x)

as an approximation distribution of q(x). This technique is well known in

sequential Monte Carlo methods [7] 2.

In RPM, an additional extension is important. This can be extended to

calculate the expectation with arbitrary q∗(x) as follows:

∫
q∗(x)f(x)dx =

∫
q(x)

q∗(x)

q(x)
f(x)dx (4.6)

'
∫

q̂(x)
q∗(x)

q(x)
dx (4.7)

=
1∑

X wj

∑
X

wi
q∗(x)

q(x)
f(x),

(4.8)

where wi is defined by (4.3). If q(x) = q∗(x), (4.8) reduces to (4.5). If q(x) =

p(x), (4.8) reduces to normal importance sampling. This gives an unified

interpretation of normal importance sampling and normalized importance

sampling. If the target distribution currently approximated by the weighted

samples is changed the weights are redefined as follows:

w∗
i ∝ wi

q∗(xi)

q(xi)
(4.9)

∝ q(x)

p(x)

q∗(xi)

q(xi)
=

q∗(xi)

p(x)
.

The advantage of this extension is that once the weights are determined we

can forget how samples are generated, that is, p(x).

2RPM is based on the technique of sequential Monte Carlo methods. Actually, the re-
lationships between sequential Monte Carlo methods and Genetic Algorithms was pointed
in [16].
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4.2. Resampling Population Model (RPM)

4.2.2 Algorithm

If the population X(t)
pop, which is supposed to be a set of unweighted samples

here, is generated from the target distribution, the empirical log-likelihood

can be calculated from the population and the currently generated samples

as follows:

L =
∫

rt(x)
qt+1(x)

rt(x)
log pt+1(x)dx (4.10)

' 1

|X(t)
m |

∑
X

(t)
m

qt+1(x)

rt(x)
log pt+1(x), (4.11)

rt(x) = α(t)qt(x) + (1 − α(t))pt(x), (4.12)

α(t) =
|X(t)

pop|
|X(t)

pop| + |X(t)
samp|

, (4.13)

X(t)
m = X(t)

pop ∪ X(t)
samp, (4.14)

where X(t)
samp is a set of the currently generated samples, which follow pt(x).

To maintain the population to follow the target distribution, RPM weights

samples according to the method described in Section 4.2.1. It is assumed

that the initial population follows a uniform distribution and the initial target

distribution q1(x) is also a uniform distribution. Thus, the initial population

is defined by

X(1)
pop = {(1, x(1)

i )}N
i=1,

where each xi is generated from a uniform distribution and N is the number

of weighted samples in the population. The population at time t is denoted

by

X(t)
pop = {(w(t)

i , x
(t)
i )}N

i=1,

and their weights are calculated from the previous population as the follow-

ing: Let us consider the following importance sampling:

L '
∫

r̂t(x)
qt+1(x)

rt(x)
log pt+1(x)dx (4.15)

' 1

|X(t)
m |

∑
X

(t)
samp

qt+1(xi)

rt(xi)
log pt+1(xi)

+
1

|X(t)
m |

∑
X

(t)
pop

w
(t)
i

qt+1(xi)

rt(xi)
log pt+1(xi),

(4.16)
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4.2. Resampling Population Model (RPM)

r̂t(x) = α(t)q̂t(x) + (1 − α(t))pt(x). (4.17)

This is equivalent to (4.11) whose r(x) is replaced with r̂(x). In this thesis,

|X(t)
pop| =

∑
w

(t)
i is defined by the effective number which is explained later,

and α(t) can be determined. Let

X(t)
samp = {(w(t)

i , x
(t)
i )}

where w
(t)
i = 1, then (4.16) can be rewritten as

L ' 1∑
Xm

wj

∑
X

(t)
m

wt
i

qt+1(xi)

rt(xi)
log pt+1(xi). (4.18)

According to (4.9) and (4.18), the weight update rule is given by

wt+1
i = wt

i

qt+1(xi)

rt(xi)
. (4.19)

The secondary objective is to select important samples for decreasing the

size of the population. The point is to prevent the accuracy of the approxi-

mation of q̂(x) from becoming worse. For this purpose, RPM basically selects

the samples with probabilities proportional to the weights and this is equiv-

alent to sampling from q̂(x) defined by (4.4). Since it is preferable to avoid

selecting overlapping samples, the population is represented by weighted sam-

ples. Obviously, one appropriate method is iteratively selecting samples by

resampling with replacement and accumulating them but this is not practical

in terms of computational cost. Another method is simply selecting the high-

est weight samples without changing the weights. q̂(x) can be a consistent

estimator but this method breaks the consistency. There is an intermediate

method between the previous two methods. that is to employs resampling

(proportional to the weights) WithOut replacement (RWOR) without chang-

ing the weights. Note that RWOR can be quickly carried out [8]. In this

chapter, RWOR is employed. Furthermore investigations on this topic are

left as future works.

Effective Number of Samples

The population is defined by weighted samples as {(w(t)
i , x

(t)
i )}N

i=1. The size

of the population cannot be defined by
∑

wi because each wi is defined by

a value proportional to q(x)
p(x)

. Let us consider the normalized weight q̂(xi) =
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4.2. Resampling Population Model (RPM)

1∑
wj

wi. This becomes a probability distribution and the average probability

of q̂(x) is defined by q̄ = exp(
∫

q̂(x) log q̂(x)dx). This can be regarded as an

approximation, where wi is given by q̄ or 0. Under this approximation, the

number of samples with nonzero weight is given by

q̄−1 = exp(−
∫

q̂(x) log q̂(x)dx) (4.20)

and this is called the effective number. The same idea have been introduced

in [42].

4.2.3 Numerical Calculation Details

The procedure of RPM is described as follows: In initialization, the initial

population X(1)
pop and the initial set of generated samples X(1)

samp are gener-

ated from a uniform distribution. Thus, the target distribution q1(x) and

the initial sampler p1(x) are uniform distributions. For generating the next

population X(t+1)
pop and the next samples X(t+1)

samp , first, the next target distri-

bution qt+1(x) is defined. In this chapter, target distributions are defined by

partially uniform distributions, which are defined by (3.1), and therefore the

threshold parameter f̃ in (3.2) is determined to define the target distribution.

f̃ is selected such that the number of samples which satisfies qt+1(x) 6= 0,

becomes N ′(< N), which is previously defined by the cutoff rate c = N ′

N
,

where N is the number of samples in the current population. To investigate

RPM with using other probability distribution families such as Boltzmann

distribution for target distributions is carried out in Chapter 6.

The merged set X(t)
m = X(t)

pop ∪ X(t)
samp is generated. The weights of the

samples in X(t)
m are updated according to (4.19). (4.19) can be rewritten by

wt+1
i = wt

i

1

α qt(xi)
qt+1(xi)

+ (1 − α) pt(xi)
qt+1(xi)

. (4.21)

Since the normalizing constants of qt(x) and qt+1(x) are unknown and pro-

portional values q̃t(x) and q̃t+1(x) are known, they are estimated from the

samples with importance sampling. Let Zt and Zt+1 be the normalizing con-

stants of qt(x) and qt+1(x), respectively. To calculate qt(x)
qt+1(x)

, Zt+1

Zt
is estimated

by

Zt+1

Zt

' 1∑
X

(t)
pop

wj

∑
X

(t)
pop

wi
q̃t+1(x)

q̃t(x)
. (4.22)
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4.3. Experiments

Since (4.21) can be rewritten as

wt+1
i = wt

i

1

α + (1 − α)pt(xi)
qt(xi)

qt+1(xi)

qt(xi)
, (4.23)

(4.22) can not be needed in practice. On the other hand, to calculate pt(x)
qt+1(x)

,

Zt+1 is estimated by

Zt+1 '
1

M

∑
X

(t)
samp

q̃t+1(x)

pt(x)
. (4.24)

These are the simplest estimators and there may exist better estimators.

This is left as a future work.

The next population X(t+1)
pop is generated by resampling from X(t)

m accord-

ing to the new weights, and then the weights are normalized so that the sum

becomes the effective number. In this chapter, samples whose weights are 0

are removed before the resampling operation even if the number of selected

samples become less than N . This contributes to faster convergence but is

not essential.

The next sampler pt+1(x) is generated not from X(t+1)
pop but from X(t)

m

because X(t+1)
pop is a part of X(t)

m and thus X(t)
m contains more information. The

empirical likelihood is given by (4.18) and the probability model maximizing

the empirical log-likelihood is selected as the next probability model pt+1(x).

Then, the next set of generated samples X(t+1)
samp are generated from pt+1(x).

The pseudo-code of the algorithm is shown in Fig. 4.1.

4.3 Experiments

This section conducts experiments to compare RPM and conventional meth-

ods such as EDA, BOA, hBOA, and IDEA. The conventional methods are

based on the common framework that iterates the following three steps: (1)

selection, (2) sampling, and (3) replacement step. Especially, the replacement

step plays the role of the population maintenance mechanism. In the present

experiments, the truncation selection, which selects the best samples in the

population, is employed. The percentage of the unselected samples is called

cutoff rate, denoted by c, in this chapter. Note that this is not exactly the

same as the cutoff parameter of RPM but they are similar. Therefore, they

have the common name in this chapter. In the sampling step, a probability

model of the selected samples is built and new samples are generated from it.
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4.3. Experiments

Resampling Population Model

1 Generate the initial population X(1)
pop and the initial samples X(1)

samp

from the uniform distribution. t ⇐ 1.

2 do{
3 Generate the target distribution qt+1(x).

4 Reweight each sample (wi, xi) ∈ X(t)
m = X(t)

pop ∪ X(t)
samp according to

(4.19).

5 Build a probability model pt+1(x) from X(t)
m according to (4.18).

6 Generate samples X(t+1)
samp = {(1, xi)}M

i=1 from pt+1(x).

7 Generate the next population X(t+1)
pop = {(1, xi)}N

i=1 by resampling

from X(t)
m .

8 t ⇐ t + 1.

9 }until(stopping criterion reached)

Figure 4.1: The pseudo-code of RPM

In the replacement step, the next population is generated from the current

population and the newly generated samples. In the present experiments,

three types of replacement operators are considered: full replacement (FR),

elitist replacement (ER) and restricted tournament replacement (RTR).

In FR, the current population is completely replaced with the newly gen-

erated samples. This case corresponds to EDA. In ER, the next population

consists of the k best samples in the current population and the newly gen-

erated samples. For simplicity, k = N × (1 − c) where N is the size of the

population and c is the cutoff parameter of the truncation selection. The

feature is that the population is monotonically improved. This type of re-

placement operators have been used in the IDEA studies. In RTR, which

is used in the hBOA studies, each generated sample is compared with one

sample in the current population, and if the generated sample is better than

the sample in the current population then they are exchanged. For selecting

the sample to be compared from the population, a subset is generated by

randomly selecting samples from the current population and the most sim-

ilar sample to the generated one in the subset is selected. The size of the

subset and the similarity is somehow provided previously. According to [21],

the size is set at min{d, dN/20e}, where d is the problem size and N is the

population size, and Manhattan distance is used in this chapter.
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4.3.1 Benchmark Problems

In the benchmark problems, the domain for each variable is xi ∈ {0, 1} and

the number of the dimension d is set at 400. Minimization problems are

considered.

Onemax

This problem is defined as

f(x) = −
d∑

i=1

xi. (4.25)

The optimum cost function value is −d, and there is no correlation between

any of the variables.

1D Ising model

This problem is defined as follows:

f(x) = −
d∑

i=1

J(xi, xi+1), (4.26)

J(xi, xj) =

{
1 xi = xj

0 xi 6= xj
. (4.27)

Periodic boundary conditions, implying that xd+1 is treated as x1, are em-

ployed. The optimum cost function value is −d. There are correlations

between two variables, as illustrated in Fig. 4.2.

2D Ising model

We consider d = r × r = 20 × 20 grids, as illustrated in Fig. 4.3. If two

connected variables attain the same value, the value of the cost function is

improved. 2D Ising model can be defined as

f(x) = −
i=r∑
i=1

j=r∑
j=1

{J(xij, xi+1,j) + J(xij, xi,j+1)}. (4.28)

Periodic boundary conditions are employed. The optimum cost function

value is -2d. This problem is basically equivalent to a check-board problem

[20].
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Figure 4.2: 1D Ising with Periodic Boundary Conditions.

Figure 4.3: 2D Ising with Periodic Boundary Conditions.

Adding Noise

Since the threshold of the partially uniform distribution cannot function pre-

cisely when multiple solutions have the same cost function value, the original

cost function f(x) is slightly altered by adding small random values ε as

follows:

f ′(x) = f(x) + ε. (4.29)

In the experiments, ε is u × 10−10, where u is a random number uniformly

distributed from 0 to 1. This is applied to all the three functions described

above.

4.3.2 Experimental Setup

This thesis focuses on the simplest probability model, that is, a fully factor-

ized one defined as follows:

p(x|w) =
i=d−1∏

i=0

p(xi|wi), (4.30)

where each p(xi|wi) is a Bernoulli distribution. This is because, for the

first step in investigating the effects of HIS, the basic probability model
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is appropriate in terms of avoiding over-fitting. Instead of changing the

complexity of the probability models, different kinds of problems are used

for the experiments. As future work, investigations on the effects of model

errors on HIS will be performed by changing the complexity of the probability

models.

When using the factorized probability model, FR (EDA) corresponds to

UMDA [29]. Probability models are built by using ML estimation. Only in

the cases of FR, we employ online updating where the parameter is updated

by

wnew = (1 − α)wold + αwML, (4.31)

where wnew, wold, wML are the new parameter, previous parameter, and ML

estimator, respectively, and α is the learning rate. This is because the pop-

ulation is quickly changed in FR and this causes instability. In the present

experiments, α = 0.5.

In all cases, there are basically three parameters: (1) the population size,

denoted by N , (2) the number of generated samples in one sampling, denoted

by M , and (3) cutoff rate, denoted by c. These values are experimentally

determined as follows:

• FR (EDA)

– N : 100, 500, 1000, 3000, or 6000.

– M = N .

– c: 0.1, 0.3, or 0.5.

• ER

– N : 100, 500, 1000, or 3000.

– M = N × c.

– c: 0.1, 0.3, 0.5, or 0.7.

• RTR

– N : 10, 50, 100, 200, 300, 400, or 500.

– M(≤ N): 10, 50, 100, 200, 300, 400, or 500.

– c: 0.1, 0.3, 0.5, 0.7, or 0.9.
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Table 4.1: Results of ER for Onemax.
N c Best Evaluations
100 0.1 –397.4 (1.5) 3409 (83.72)
500 0.1 –400 (0) 15500 (196.21)

1000 0.1 –400 (0) 30300 (788.67)
3000 0.1 –400 (0) 90300 (1728.58)
100 0.3 –397.4 (0.92) 3103 (86.38)
500 0.3 –400 (0) 14045 (260.24)

1000 0.3 –400 (0) 28030 (283.02)
3000 0.3 –400 (0) 82200 (1505.99)
100 0.5 –397.1 (0.83) 2750 (100)
500 0.5 –400 (0) 12650 (165.83)

1000 0.5 –400 (0) 24750 (460.98)
3000 0.5 –400 (0) 74100 (994.99)
100 0.7 –394.5 (2.2) 2397.7 (75.9)
500 0.7 –400 (0) 11004.9 (104.7)

1000 0.7 –400 (0) 21410.8 (523.08)
3000 0.7 –400 (0) 62401.7 (1639.37)

• RPM

– N : 10, 50, 100, 200, 300, 400, or 500.

– M(≤ N): 10, 50, 100, 200, 300, 400, or 500.

– c: 0.01, 0.05, 0.1, or 0.2.

The stopping criteria are that the number of function evaluations is

greater than 2.9×106, the variance of the cost function values of the generated

samples is less than 10−20, and the optimal solution is found.

4.3.3 Results

The results of FR (EDA) are shown in Appendix A. A part of the results for

onemax are shown in Tables 4.1 , 4.2 and 4.3. The columns titled “Best” list

the average cost function values, with the standard deviation in parenthe-

sis, of the best obtained solutions over ten independent runs. The columns

titled “Evaluations” list the average number, with the standard deviation

in parenthesis, of function evaluations performed until stopping criteria are
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Table 4.2: Results of RTR (C = 0.7) for Onemax.
N M Best Evaluations
10 10 –255.9 (7.44) 193 (16.16)
50 10 –331.7 (5.9) 2900010 (0)
50 50 –370.9 (4.91) 2900050 (0)

100 10 –372.6 (4.78) 2900010 (0)
100 50 –390.1 (2.12) 2900050 (0)
100 100 –397.1 (1.81) 2610730 (868110)
200 10 –398.1 (1.22) 2610823 (867561)
200 50 –399 (0.89) 2032990 (1324456.48)
200 100 –399.7 (0.46) 878810 (1323251.13)
200 200 –400 (0) 10820 (3552.41)
300 10 –400 (0) 18704 (3981.81)
300 50 –399.9 (0.3) 308135 (863982.34)
300 100 –400 (0) 18650 (2154.65)
300 200 –400 (0) 17320 (1695.76)
300 300 –400 (0) 18600 (2212.69)

met. The others show the parameters. Basically, FR, ER and RPM afford

sufficient good results, that is, finding an optimal solution. In contrast, in

some RTR cases, the population does not converge and the obtained solu-

tions are bad. The results imply that RTR needs appropriate parameter

setting especially on the cutoff rate, though it may be difficult to select an

appropriate parameter in general. RTR with c = 0.7 is comparatively good

for onemax.

The results for 1D and 2D Ising are shown in Figs. 4.4 and 4.5, respec-

tively. In each figure, the horizontal axis represents the number of function

evaluations, while the vertical axis represents the cost function value. Each

point represents the average cost function value of the best obtained solutions

and the average number of function evaluations performed over ten indepen-

dent runs for FR, ER and RPM. Note that RPM with C = 0.1 and C = 0.2

are not shown because in these cases the population quickly converges and

the results are not good. The results of these cases with M = 500 are shown

in Fig. 4.6. In RTR, the population does not converge and therefore the

average cost function value of the best case is represented by the horizontal

line in each figure. The five best cases of RTR for 1D and 2D Ising are shown

in Tables 4.4-(a) and 4.4-(b), respectively. For comparison, a part of results
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Table 4.3: Results of RPM (C = 0.01) for Onemax.
N M Best Evaluations
10 10 –267.8 (8.82) 1455 (197.7)
50 10 –395.7 (1.73) 17935 (1268.47)
50 50 –399.9 (0.3) 118075 (4346.22)

100 10 –400 (0) 20291 (341.86)
100 50 –400 (0) 133730 (4321.41)
100 100 –400 (0) 313720 (9888.26)
200 10 –400 (0) 30225 (437.16)
200 50 –400 (0) 210360 (4185.08)
200 100 –400 (0) 476680 (8545.62)
200 200 –398.8 (3.28) 1040020 (122154.02)
300 10 –400 (0) 29187 (343.77)
300 50 –400 (0) 281865 (3792.63)
300 100 –400 (0) 609900 (11553.87)
300 200 –400 (0) 1319380 (23383.96)
300 300 –397.3 (6.87) 2019090 (315916.21)

of RPM are also shown in tables 4.5-(a) and 4.5-(b). The expression is the

same as in the previous tables.

As shown in the results for 1D and 2D Ising, if sufficient number of

function evaluations are performed until convergence RPM is clearly the

best method. ER may be slightly better than FR. RTR can afford better

solutions than ER, but RTR has the problem of convergence and may have

the difficulty in parameter setting, It is pointed that RTR with tournament

selection is better than RTR with truncation selection in [21].

4.4 Discussion

4.4.1 Diversity of Population

The quality of a population depends on both the average of the cost function

value over the samples in the population and the diversity of the population.

If we keep only samples with better cost function values, the population will

quickly converge into local optima. To prevent this, it is important to search

promising area where samples have not been generated yet, by keeping the

diversity.
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Table 4.4: The 5 best cases of RTR for 1D and 2D Ising. In all cases, the
population does not converge and thus 2.9 × 106 function evaluations are
performed.

(a) 1D Ising
N M c Best

200 200 0.3 –370.2 (5.55)
500 10 0.7 –369.8 (2.89)
200 10 0.3 –369.6 (3.07)
300 10 0.5 –369.4 (3.35)
500 500 0.7 –369 (3.13)

(b) 2D Ising
N M c Best

500 300 0.7 –733.4 (9.96)
200 10 0.3 –731.8 (18.41)
200 100 0.3 –729.8 (14.52)
200 50 0.3 –729 (7)
300 50 0.5 –728.2 (11.15)

In RPM, the diversity is kept not by resampling, but by weighting 3. In

calculating the empirical log-likelihood, small weight samples are basically

ignored or removed. The weights are defined by (4.19). In (4.19) samples

with higher value of p(x) have smaller weight. This means that samples in

an area where many samples are generated, are regarded as less important.

To generate samples from the target distribution q(x) is supposed to be

the optimal in the EAPM framework. However, in practice, the samples

are generated from a probability model p(x) approximating q(x) and the

samples have a bias because p(x) is a simple function whereas q(x) is a

complex function in general. Then, the role of (4.19) is the correction of the

sampling bias of p(x).

CE actually has this bias removing mechanism but cannot afford good

results. This is because generated samples are unstable due to the estimation

error of p(x) in approximating q(x). In contrast, the population in RPM

theoretically does not depend on p(x) and consequently RPM affords good

results. This implies that the population mechanism of RPM improves the

3It is clearly optimal that no samples are removed. Even in this case, the diversity can
be controlled by weighting. The role of resampling is to keep the population size constant.

31



4.4. Discussion

Table 4.5: The results of RPM (N = 500, c = 0.01) for 1D and 2D Ising.
(a) 1D Ising

M Best Evaluations
10 –367.6 (2.5) 33113 (1197.29)
50 –376.4 (4.18) 212620 (6956.98)

100 –379.2 (2.99) 426020 (17388.26)
200 –379.6 (3.77) 870180 (23316.64)
300 –379.2 (3.92) 1336070 (48353.53)
400 –381.6 (4.54) 1867220 (57325.4)
500 –382.4 (2.94) 2365300 (93769.45)

(b) 2D Ising
M Best Evaluations
10 –724.8 (14.29) 39582 (1398.18)
50 –738.8 (11.32) 230640 (9368.96)

100 –749.4 (8.81) 494280 (20965.72)
200 –766.4 (12.64) 1186340 (92668.69)
300 –749.2 (6.34) 1742000 (40892.32)
400 –761.6 (15.89) 2473260 (146213.15)
500 –761.4 (18.11) 2900500 (0)
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quality of samples in calculating the empirical log-likelihood, where samples

from p(x) may be bad.

4.4.2 Control of Convergence Speed

In RPM, the convergence speed is controlled by the target distribution, that

is, the threshold parameter of partially uniform distribution. It is guaranteed

that the threshold is monotonically decreased in RPM and the population

must converge eventually. ER possesses the similar property.

The convergence speed has an effect on the accuracy of importance sam-

pling of (3.10). To generate samples from the current target distribution is

the optimal case. In this case, the weight is defined by qt+1(x)
qt(x)

. If qt+1(x)

and qt(x) are similar, the accuracy of importance sampling becomes better.

In other words, slow convergence improves the accuracy and helps to afford

good results. Through the experiments, it is confirmed that RPM is actually

the only method that can monotonically control its convergence speed by the

cutoff rate as shown in Fig. 4.6.

4.5 Summary

This chapter proposed Resampling Population Model (RPM), where a part

of the historical samples are stored as the population to follow the target

distribution from the viewpoint of importance sampling. Experimental com-

parisons between RPM and the conventional population mechanisms have

revealed the following two advantages of RPM: (1) RPM affords better solu-

tions than the conventional methods and (2) RPM can monotonically control

the convergence speed by using the cutoff rate.
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Figure 4.4: Results for 1D Ising.
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Figure 4.5: Results for 2D Ising.
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Figure 4.6: Results of RPM (N = 500) for 2D Ising.
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Chapter 5

Hierarchical Control of The
Divergence

5.1 Introduction

The annealing is the essential concept of the EAPM. However, the anneal-

ing is an unstable method because the obtained solutions cannot be further

improved once the EAPM converges. This is the problem of local optima.

To overcome this problem, this paper proposes a novel method, Hierar-

chical Importance Sampling (HIS) that can be used instead of the annealing.

The basic principle is to generate multiple sample sets with different diver-

sities 1. For example, one sample set may be almost random and another,

almost converged. HIS employs multiple target distributions, builds a prob-

ability model of each target distribution, respectively, and generates samples

from all the built probability models simultaneously. Therefore, the obtained

samples consist of a number of sample sets, each of which is generated from a

different probability distribution. The salient feature is that mixed samples

are used for building probability models of the target distributions according

to importance sampling [2,39], which guarantees mathematical validity. The

aim of this paper is to investigate the effectiveness of the proposed method

through experimental comparisons

1The exchange Monte Carlo method (EMC) [17] uses the same concept of sampling
from multiple target distributions with different diversities. EMC is one of the Markov
chain Monte Carlo methods (MCMC) [2]. MCMC and EMC are essentially different from
EAPM and HIS. The relationships among EAPM, MCMC, HIS, and EMC are summarized
in Section 5.4.6.
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5.2. Hierarchical Importance Sampling (HIS)

5.2 Hierarchical Importance Sampling (HIS)

5.2.1 Theoretical Overview

HIS maintains L number of layers, each of which consists of a sample set Xl,

a probability model pl(x), and a target distribution ql(x). Each Xl is a set

of samples generated from the corresponding probability model pl(x). Each

pl(x) is built with ML estimation to approximate the corresponding target

distribution ql(x) , which is assumed to be previously provided here. Thus,

Xl is approximately distributed according to ql(x). It is supposed that ql(x)

has less diversity (i.e.,e ntropy) than ql−1(x). Therefore, it is also expected

that pl(x) has less diversity than pl−1(x), and Xl contains better solutions

than Xl−1. Normally, q0(x) is the uniform distribution, and qL−1(x) is the

converged distribution, which generates only the best obtained solution.

Basically, HIS iterates the following two steps: (1) sampling and (2) es-

timation. In the sampling step, each Xl is updated by sampling from pl(x)

and replacing the current sample set with the newly generated samples; the

sampling step is illustrated in Fig. 5.1–(a). In the estimation step, each pl(x)

is updated to approximate ql(x) more accurately than the previous one. The

important feature is that all the sample sets Xm = X0 ∪ · · · ∪XL−1 are used

for updating each pl(x). The probability distribution of Xm is given by a

mixture distribution, which is defined as follows:

pm(x) =
∑

l

αlpl(x), (5.1)

αl =
Ml∑
i Mi

, (5.2)

where Ml is the number of samples in Xl; thereby, the empirical log-likelihood

with respect to ql(x) can be calculated via importance sampling as follows:

L ' 1∑
i Mi

∑
Xm

ql(x)

pm(x)
log pl(x). (5.3)

This corresponds to (3.10). The estimation step is illustrated in Fig. 5.1–(b).

5.2.2 Comparison between HIS and the EAPM

Suppose that the target distributions are previously provided in the EAPM

and HIS. Let L be the number of the layers of HIS. At time t, the EAPM
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(a) Sampling (b) Estimation

Figure 5.1: Illustration of Hierarchical Importance Sampling.

generates a probability model pt(x) approximating the corresponding tar-

get distribution qt(x), whereas HIS generates L number of probability mod-

els p
(t)
0 (x) · · · p(t)

L−1(x) approximating the corresponding target distributions

q0(x) · · · qL−1(x), respectively. To generate pt(x), the EAPM uses only one

sample set Xt−1, which is generated in the previous step. On the other hand,

to generate p
(t)
l (x), HIS uses all the sample sets X

(t−1)
0 · · ·X(t−1)

L−1 , generated

in the previous step. In other words, the difference is that the EAPM sequen-

tially generates probability models and sample sets, whereas HIS generates

probability models and sample sets both simultaneously and iteratively.

If only the l − 1th sample set Xl−1 is used for updating the lth proba-

bility model pl(x) in the estimation step of HIS, HIS, indeed, corresponds to

iterative execution of the EAPM, which means that the EAPM is restarted

from the initialization if the EAPM converges. This implies that HIS is a

mathematical extension of the EAPM.

5.2.3 Target Distribution Control

HIS can theoretically operate if the target distributions are previously de-

fined in any manner. However, in practice, HIS requires appropriate target

distributions to produce good results. This section explains a manner in

which the target distributions of HIS are provided. Note that the proposed

target distribution control method in this section cannot be directly applied

with any probability distribution other than the partially uniform distribu-
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tion defined by (3.1) for target distributions. Further discussion is left in

Chapter 6.

It is supposed that q0(x) and qL−1(x) are given2; then the objective of

the control method is to determine ql(x) for l = 1 · · ·L − 2. Each ql(x) is

represented by the partially uniform distribution and denoted by ql(x|f̃l) with

the threshold parameter f̃ . In terms of importance sampling, ql−1(x) and the

next target distribution ql(x) should be similar because the accuracy of the

empirical log-likelihood given by the importance sampling depends on this

similarity. Thus, the objective is to select f̃l such that ql−1(x|f̃l−1), ql(x|f̃l),

and ql+1(x|f̃l+1) are similar.

The present concept is based on the size of the search space. In the case

of the partially uniform distribution, a set of drawable samples is defined by

Cl = {x|q̃(x|f̃l) = 1}, where q̃(x|f̃) is defined by (3.2), and the number of

drawable samples is given by
∫
C dx =

∫
q̃(x)dx = Z. Thus, the size of the

search space can be provided by the normalizing constant defined by (3.3).

Note that the normalizing constant is normally unknown, but its estimator

can be calculated through importance sampling as follows:

Zl(f̃) =
∫

q̃(x|f̃)dx

' 1

M

∑
p(x)

q̃(x|f̃)

p(x)

= Ẑl(f̃), (5.4)

where
∑

p(x) denotes summation over the samples generated from q(x) and

M is the number of the samples. In an importance sampling calculation,

1

M

∑
ql−1(x)

ql(x)

ql−1(x)
f(x), (5.5)

the probability of generating an acceptable sample, whose weight ql(x)
ql−1(x)

is

not zero, is given by ∫
Cl−1

ql−1(x)
q̃l(x)

q̃l−1(x)
dx =

Zl

Zl−1

, (5.6)

where it is assumed that Cl ⊆ Cl−1. It is clear that the rejected samples do

not contribute to the importance sampling. In the EAPM under an assump-

tion that samples are generated not from the probability models but from
2In the experiments, a probability distribution that generates only the best obtained

sample is used for qL−1(x).
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Figure 5.2: Search Space Reduction.

the target distributions, the sum of the number of the accepted samples

throughout the optimization process is given by

L−1∑
l=1

Ml−1
Zl

Zl−1

, (5.7)

where L is the number of iterations. The maximization condition of Zl with

respect to (5.7) is given by

Ml−1
Z∗

l

Zl−1

= Ml
Zl+1

Z∗
l

, (5.8)

where Z∗
l is the optimal value.

If Zl−1 and Zl+1 are given3, the target normalizing constant Z∗
l is obtained

from (5.8). Then, the threshold parameter f̃l is updated to satisfy

Z∗
l = Ẑl(f̃l), (5.9)

where Ẑl(f̃l) is the estimator of the normalizing constant given by (5.4). A

method for solving (5.9) is described in Section 6.2.4. Figure 5.2 shows an

illustration of the search space reduction.

3Note that Z0 and ZL−1 are normally previously provided and thus, all Zl can be
previously determined according to (5.8). However, this paper uses the estimators of Zl−1

and Zl+1 to determine Zl because, in some cases, it can be difficult to build a probability
model approximating a target distribution with a certain normalizing constant.
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Hierarchical Importance Sampling (HIS)

1 Initialize the probability models p0(x) · · · pL−1(x) and the sample sets
X0 · · ·XL−1. l ⇐ 0.

2 do{
3 Adjust the target distribution ql(x) according to (5.8).

4 Calculate the empirical log-likelihood with respect to ql(x)
from Xl−1, Xl, Xl+1 through importance sampling accord-
ing to (5.3).

5 Update the probability model pl(x) according to the em-
pirical log-likelihood.

6 Generate samples from pl(x) and replace the sample set Xl

with the generated samples.
7 l ⇐ (l + 1)%L.

8 }until(stopping criterion reached)

Figure 5.3: The Pseudo-code of Hierarchical Importance Sampling.

5.2.4 Practical Procedure

In the practical procedure of HIS, first of all, each pl(x) is initialized to a

uniform distribution and each Xl is generated from pl(x). For each l, the lth

layer (i.e., ql(x), pl(x), and Xl) is sequentially and iteratively updated. To

update the lth layer, first, ql(x) is updated according to (5.8), and then pl(x)

is updated. To calculate the empirical log-likelihood with respect to ql(x),

we use only three sample sets, which are the upper one Xl−1, the current

one Xl, and the lower one Xl+1
4 for two reasons: calculating the marginal

probability (5.1) consumes a considerable amount of time, and the samples in

Xi, generated from pi(x), tend not to contribute to the importance sampling

(5.3) if pi(x) and ql(x) are not similar. Finally, the sample set Xl is replaced

with samples newly generated from pl(x). The pseudo-code of HIS is shown

in Fig. 5.3.

4X−1 and XL are supposed to be null sets.

41



5.3. Experiments

Table 5.1: Results of HIS for Onemax.
Samples Cutoff Best Evaluations

10 10 –400 (0) 29155 (12095.51)
10 20 –400 (0) 32743 (11000.43)
50 10 –400 (0) 48435 (20868.97)
10 30 –400 (0) 56170 (16627.74)
10 40 –400 (0) 67595 (20897.39)
50 20 –400 (0) 82215 (15277.81)
50 30 –400 (0) 113680 (23360.03)
50 40 –400 (0) 157715 (35272.9)

5.3 Experiments

This section describes the experiments conducted to investigate the advan-

tages of HIS through comparison with EDA.

5.3.1 Experimental Setup

The present experiments are set up according to the experiments of Section

4.3.

HIS Setting

HIS employs the online updating defined in Section 4.3.2. All the parameter

settings are described as follows:

• The number of generated samples in one sampling M : 10 or 50.

• The number of the layers L: 10, 20, 30, or 40.

• Learning rate α: 0.5.

These values are experimentally determined. Note that the number of sam-

ples contained in Xi is denoted by Mi and Mi = Mj = M .

5.3.2 Results

Table 5.1 shows the results of HIS for Onemax. The first and the second

columns list the number of generated samples per sampling and the number

of layers, respectively. The third column lists the average cost function value,
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Figure 5.4: Results of HIS for 1D Ising.
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Figure 5.5: Results of HIS for 2D Ising.
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with the standard deviation in parenthesis, of the best obtained solutions

over ten independent runs. The forth column lists the number of function

evaluations.

Figures 5.4 and 5.5 show the results of HIS for the 1D and 2D Ising mod-

els, respectively. In each figure, the horizontal axis represents the number of

function evaluations, while the vertical axis represents the average cost func-

tion value. Each point represents the average cost function value of the best

obtained solutions over ten independent runs for the corresponding number

of function evaluations performed. The standard deviations are negligibly

small and may be ignored. Additionally, the results of EDA are appended

for comparison. The points correspond to the results in Tables A.2 or A.3 in

Appendix A.

The results for Onemax show that HIS performs as well as EDA. For EDA,

M should be set at more than 100; otherwise, EDA can not find the optima.

Figures 5.4 and 5.5 show that HIS can find better solutions than EDA. EDA

may exhibit faster convergence than HIS; however, given sufficient time (i.e.,

a sufficient number of function evaluations), HIS can find better solutions

than EDA.

5.4 Discussion

5.4.1 Escaping Local Optima

As shown in Figs. 5.4 and 5.5, it is clear that HIS can afford better solutions

than EDA. The number of samples employed by HIS for building a probability

model is given by

3 × M. (5.10)

The number of samples that EDA uses for building a probability model is

given by

(1 − c) × M. (5.11)

When M = 10, HIS uses 30 samples; on the other hand, when M = 100 and

c = 0.3, EDA uses 70 samples. This implies that HIS can escape from local

optima by using fewer samples.

In EDA and the EAPM, the entropy of the target distribution is decreased

in a stepwise fashion and the target distribution is tracked by a probability

model. For tracking the target distribution, the expected log-likelihood must
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Figure 5.6: Optimization Process of EDA (M = 100, c = 0.3) and HIS
(L = 10,M = 10) for 400-dimensional Onemax.

be estimated. The accuracy of an estimator of the expected log-likelihood is

dependent on the accuracy of the approximation of the probability model.

Thus, once an inferior probability model is built, the accuracy of the estima-

tor of the log-likelihood with respect to the next target distribution is also

compromised. Subsequently, acceptable probability models cannot be gener-

ated. This phenomenon can be understood as dropping into local optima.

On the other hand, HIS overcomes this problem by maintaining multiple

probability models. In HIS, the larger is the entropy of a target distribution,

the easier it is to approximate it. More specifically, low layers tend to have

good probability models and high layers tend to have bad probability models.

HIS iteratively improves the probability models in the higher layers with

samples generated from the lower layers. Thus, if the lower layers have good

probability models, the expected log-likelihood can be estimated well at the

layers above them. Once a good probability model is built, it tends not to

make a change for the worse. Consequently, HIS sequentially improves all

the probability models from the lowest layer.

5.4.2 Iterative EDA

The more the number of function evaluations performed, the better the solu-

tions afforded by HIS. This is because the samples generated by HIS always

have certain diversity. Figure 5.6 shows the cost function values of the sam-

ples generated by HIS and EDA. The horizontal axis represents the number
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of function evaluations, while the vertical axis represents the cost function

value. HIS has no convergence, and therefore, can find the optimum solu-

tion eventually. However, this is not an unique advantage of HIS because no

convergence can also be realized by iterative EDA.

As the results of EDA for 1D Ising and 2D Ising show, iterative EDAs

do not perform as well as HIS because the standard deviations of the best

values are insufficiently small. For example, the 10 best obtained solutions

in 100 trials of EDA with M = 3000 and c = 0.5 for the 2D Ising are −746,

−736, −732, −732, −730, −730, −730, −728, −726, and −726. If the target

distributions are assumed to be previously provided, HIS is an extension of

the EAPM. The advantage of HIS is the use of the samples and probability

models of other trials, whereas each trial in iterative EDA is independently

executed.

5.4.3 Parameters

In sampling-based optimization, there exists a trade-off between the number

of function evaluations and the quality of the obtained solutions. In other

words, the greater is the number of function evaluations, the better are the

solutions afforded. In EDA, the number of function evaluations perfomed

until convergence depends on the parameters: the number of generated sam-

ples in one sampling and the cutoff rate. If a solution with a certain quality

is needed, it becomes necessary to provide good parameters.

On the other hand, HIS does not converge, and the best obtained value is

gradually improved. Thus, it can be said that the setting of the parameters

in HIS is easier than in EDA. However, both the number of function evalu-

ations necessary and the efficiency of HIS depend on the number of layers.

A greater number of layers in HIS affords greater similarity between adja-

cent target distributions (i.e., ql(x) and ql−1(x)), implying that it is easier

for HIS with a greater number of layers to escape from local optima. On

the other hand, HIS with a greater number of layers requires more function

evaluations because the samples generated from bad probability models are

useless, and the probability models in the higher layers tend to be bad at

the early stages. The number of layers may be expected to be determined

adaptively according to the accuracy of the probability models: this will be

the subject of future work.
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5.4.4 Computational Cost

HIS can provide better results, but at greater computational cost than EDA.

First, HIS requires L times the memory space required by EDA: L number of

probability models and L number of sample sets maintained in HIS. Second,

HIS consumes greater computational time than EDA: the calculation of the

probability of the mixture distribution given by (5.1) requires considerable

time.

5.4.5 Mixture Model-based EDAs

In terms of using a mixture distribution, some mixture model-based EDAs

such as [31] can be considered similar works. However, they are classified as

methods with annealing because they simply split samples generated from

one probability model into a number of groups and gradually converge each

group, whereas HIS organizes the diversity of all the probability models.

Thus, the optimization process of them is almost equivalent to one illustrated

in Fig. 5.6-(a).

Note that HIS can simply employ a mixture distribution as the proba-

bility model of each target distribution. In terms of statistical estimation,

the model error can be reduced by using a mixture model. On the other

hand, HIS improves the accuracy of the empirical log-likelihood in terms of

importance sampling.

5.4.6 Comparison with Markov Chain Monte Carlo

Calculating the expectation with respect to the distribution of interest is

common to Markov chain Monte Carlo methods (MCMC) [2] and EAPM.

Table 5.2 briefly shows the relationship between MCMC and EAPM.

The key concepts behind MCMC are local transition, which realizes ef-

fective sampling, and designing it as a Markov chain by satisfying detailed

balance, which guarantees mathematical validity. On the other hand, the

principle feature of EAPM is estimating an effective probability distribution

and sampling from it. The mathematical validity is guaranteed by impor-

tance sampling.

In the practical methods, there exist correspondence relations. For ex-

ample, simulated annealing (SA) [19] corresponds to general EDA and the
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Table 5.2: MCMC and EDA.

MCMC EAPM
Mathematical Validity Detailed Balance Importance Sampling

Effective Sampling Local Transition Estimated Probability Model
Sequential SA the EAPM
Parallel EMC HIS

EAPM in terms of sequentially tracking a target distribution, and the ex-

change Monte Carlo method (EMC) [17] corresponds to HIS in terms of

sampling from multiple target distributions.

5.5 Summary

This chapter proposed Hierarchical Importance Sampling (HIS), a method

that can be used instead of the annealing for the EAPM. Experimental com-

parisons between HIS and EDA revealed that HIS outperforms EDA. The

advantages of HIS can be summarized as follows: (1)it affords better solutions

than EDA by escaping from local optima, and (2)it allows the parameters to

be set easily.
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Chapter 6

Convergence Schedule

6.1 Introduction

One difficulty of the EAPM is to determine the target distributions. This is

called the problem of the convergence schedule or also called the annealing

schedule. In related works, one promising method is standard deviation

schedule (SDS) [25,26]. However, SDS is based on an empirical rule.

This chapter proposes a novel convergence schedule method and high-

lights the theoretical aspects, that is, a relationship between the entropy

of the target distribution and the Fisher information, which can assess the

accuracy of the statistical estimation. The proposed method is designed to

improves the accuracy of the statistical estimation. The aim of this chapter

is to investigate the efficiency of the proposed convergence schedule.

6.2 Entropy Reduction Schedule (ERS)

6.2.1 Search Space Reduction

The target distributions have an effect for the variance of the importance

sampling of (3.10). The objective of the convergence schedule is to reduce the

variance of the importance sampling by controling the target distributions.

For simplicity, let us introduce two assumptions. One is that each proba-

bility model pt(x) completely approximates the corresponding target distri-

bution qt(x), that is, pt(x) = qt(x). The other is that each target distribution

is a partially uniform distribution. For partially uniform distributions, the

search space can be defined by Ω = {x|q(x) 6= 0}. It holds that q(x) = 1
|Ω| for
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6.2. Entropy Reduction Schedule (ERS)

x ∈ Ω and Ω = Z, where Z is the normalizing constant. Normally Ωt+1 ⊆ Ωt

is satisfied in the EAPM, and then x ∈ Ωt+1 satisfies the following:

qt+1(x)

pt(x)
=

qt+1(x)

qt(x)
=

|Ωt|
|Ωt+1|

. (6.1)

( |Ωt|
|Ωt+1|)

−1 = |Ωt+1|
|Ωt| can be understood as the accept probability, which means

the probability of a sample generated from Ωt to enter the region Ωt+1. In

importance sampling, rejected samples that is qt+1(x)
qt(x)

= 0 (i.e., x 6∈ Ωt+1)

have no effect, and therefore a probability distribution that maximizes the

accept probability should be selected.

In the EAPM, multiple importance sampling are carried out. The number

of the accepted samples in a whole optimization process is written by

T∑
t=1

Mt
|Ωt+1|
|Ωt|

, (6.2)

where Mt is the number of generated samples in the t-th iteration and T is

the number of the iterations. By maximizing (6.2), the following equations

are obtained:

Mt−1
|Ωt|
|Ωt−1|

= Mt
|Ωt+1|
|Ωt|

. (6.3)

In general, Mt−1 = Mt and the equations are rewritten by

|Ωt+1|
|Ωt|

= c, (6.4)

where 0 ≤ c ≤ 1 is a constant value, called the cutoff ratio. (6.4) is under-

stood that the size of search space is reduced with a common ratio c.

6.2.2 Theoretical Justification

The property of (6.4) is intuitively good, but there remains a question why

(6.4) is good from theoretical viewpoints. For answering this question, the

asymptotic error of MCI is highlighted.

In the EAPM, an expected log-likelihood,

L(θ) =
∫

q(x) log p(x|θ), (6.5)
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where θ is the parameter of the probability model p(x|θ), is calculated via

importance sampling as follows:

L̂(θ) =
1

M

∑
p(x)

q(x)

p(x)
log p(x|θ). (6.6)

The true parameter θ∗, which maximizes L(θ), is satisfies

∂L

∂θ
= E

[
∂

∂θ
log p(x|θ∗)

]
q(x)

= 0. (6.7)

On the other hand, the variance

σ2 = Var

[
∂

∂θ
log p(x|θ∗)

]
q(x)

(6.8)

= E

(
∂

∂θ
log p(x|θ∗)

)2


q(x)

(6.9)

is called the Fisher information and becomes an assessment of the ML es-

timator. In importance sampling, the Fisher information is calculated as

follows:

σ2
IS = Var

[
q(x)

p(x)

∂

∂θ
log p(x|θ∗)

]
p(x)

(6.10)

= E

(
q(x)

p(x)

∂

∂θ
log p(x|θ∗)

)2


p(x)

. (6.11)

By using the assumption of (6.1), the Fisher information in the EAPM is

given by

σ2
IS =

Ωt

Ωt+1

σ2
t , (6.12)

where σ2
t = Var

[
∂
∂θ

log p(x|θ∗)
]
qt(x)

. This shows that the original Fisher

information is multiplied by the inverse of the accept probability.

The squared error,

∣∣∣∣∣∂L̂(θ∗)

∂θ
− ∂L(θ∗)

∂θ

∣∣∣∣∣
2

=

∣∣∣∣∣∂L̂(θ∗)

∂θ

∣∣∣∣∣
2

(6.13)
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represents the empirical Fisher information. According to (2.5), the average

squared error is written with the accept probability as follows:

E

∣∣∣∣∣∂L̂(θ∗)

∂θ

∣∣∣∣∣
2
 =

σ2
t

Ωt+1

Ωt
Mt

. (6.14)

Here, it becomes clear that our maximization condition (6.3) minimizes the

sum of the inverse1 of Fisher information, that is,

∑
t

Ωt+1

Ωt

Mt
1

σ2
t

, (6.16)

however, under the assumption that each σ2
t for the t-th target distribution

is equivalent to each other.

6.2.3 Search Space Size and Entropy

In the previous section, we consider only the partially uniform distribution,

and the concept of the search space Ω plays the central role. In the EAPM,

we control other types of probability distributions such as Boltzmann distri-

butions, and however it seems to be difficult to define the search space for

the Boltzmann distribution.

Actually, the size of the search space can be approximately measured by

entropy, which is defined as follows:

S = −
∫

q(x) log q(x)dx. (6.17)

This integration can be understood as the geometric average. The geometric

average of q(x) with respect to q(x) is given by

q̄ = exp
∫

q(x) log q(x)dx. (6.18)

This is understood as an approximation of a general probability distribution

by a partially uniform distribution. Then, the search space size is given by

|Ω| = log S. (6.19)

1The inverse of Fisher information has important aspect.

Var[θ̂] ≥ 1
σ2

(6.15)

is well known bound on any unbiased estimator as Cramér-Rao bound.

53



6.2. Entropy Reduction Schedule (ERS)

Finally, from (6.4), the convergence schedule is given by

St+1 − St = log c. (6.20)

Note that 0 ≤ c ≤ 1 and −∞ ≤ log c ≤ 0. This shows that the entropy is lin-

early reduced. Hence, the proposed schedule is called the entropy reduction

schedule (ERS).

6.2.4 Implementation Issues

In practice, the entropy cannot be calculated exactly, except for uniform

distributions. In ERS, entropy is estimated by using MCI. The following

sections show the methods to find a parameter value such that the probability

distribution has the given entropy for the partially uniform distribution and

the Boltzmann distribution.

Partially Uniform Distribution

For partially uniform distributions, the entropy is given by

S = log Z. (6.21)

Then, the objective is to solve the following equation:

Z∗ = Ẑ(f̃), (6.22)

=
1

M

∑
p(x)

q̃(x|f̃)

p(x)
(6.23)

where Z∗ is the given search space size, Ẑ is the estimated normalizing con-

stant, and q̃(x|f̃) is defined by (3.2).

The estimator of the normalizing constant is a monotonically decreas-

ing step function with respect to f̃ , and its change-points are given by

f(x1) · · · f(xM), where x1 · · · xM are the given samples. Thus, the solution is

selected from f(x1) · · · f(xM). Assuming f(x1) < · · · < f(xM) without loss

of generality, we have the following:

Ẑ(f̃(xi+1)) = Ẑ(f̃(xi)) +
1

M × pm(xi+1)
. (6.24)

A linear search on f(x1) · · · f(xM) can afford an approximate solution. In

the experiments, for f̃ , we select f(xk) such that Ẑ(f(xk))−Z∗ is minimized

under Z∗ < Ẑ(f(xk)).
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Boltzmann Distribution

For Boltzmann distributions, the entropy is given by

S = f̄β + log Z, (6.25)

where f̄ =
∫

q(x)f(x)dx. Its derivative is given by

∂S

∂β
= −σ2β, (6.26)

where σ2 = Var[f(x)]q(x) and this can be calculated via importance sampling.

Our approach is based on the gradient. By using the assumption that σ2 is

a constant value, the difference of the entropy is approximately given by

∆S ' −σ2
∫

β dβ. (6.27)

Then, we obtain the update rule

βt+1 =

√
β2

t −
∆S

σ2
t

. (6.28)

This is the single step updating. Of course we can employ a multi-step

updating way.

6.3 Experiments

For the basic framework, the resampling population model (RPM) [14] is

employed because it is experimentally confirmed that RPM is more efficient

than the EAPM. the EAPM has one parameter that is the number of gen-

erated samples in one sampling, denoted by M . RPM has one additional

parameter to the EAPM. That is the number of the stored samples, denoted

by N . ERS has the parameter of the cutoff ratio defined in (6.4), and denoted

by c. The difference of entropy is obtained by ∆S = log c.

6.3.1 Basic Property

This section describes experiments conducted to investigate the basic prop-

erty of ERS. The parameters are setup as N = 200, M = 200, c = 0.1

(∆S = log 0.1 ' 0.105). The parameters are experimentally determined so

that the Monte Carlo error is sufficiently ignored. Two cases which employ

the partially uniform distribution and the Boltzmann distribution, respec-

tively, are experimented.
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Figure 6.1: A typical evolution for onemax in using partially uniform distri-
butions.

Result

The Left-hand side figures of Figs. 6.1, · · ·, 6.6 show the evolution of the

entropy. In each figure, the vertical axis represents the empirical entropy. The

horizontal axis represents the number of iterations. In theory, the entropy is

linearly reduced. The difference is log 0.1 ' 0.105 and the line in each figure

represents y = 0.105x + b, where b is fitted to the data.

For onemax, the theoretical entropy transition is almost realized in both

cases, that is, the partially uniform distribution and the Boltzmann distri-

bution cases. However, for 1D and 2D Ising model, the realized entropy

transition is different from the theoretical one in both cases.

We show the evolution of the standard deviation of the cost function

value of the generated samples in the right-hand side figure of each figure.

ERS with the partially uniform distribution, the difficulty of adjusting the

threshold parameter described in Section 6.2.4 depends on the variance of

the cost function value of the generated samples. ERS with the Boltzmann

distribution assumes that the variance of the cost function value with respect

to the current target distribution is not changed if the β is slightly moved.

The rapid change can be seen for 1D and 2D Ising model and, at that time,

the entropy is quickly decreased in both cases.
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Figure 6.2: A typical evolution for 1D Ising in using partially uniform distri-
butions.
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Figure 6.3: A typical evolution for 2D Ising in using partially distributions.

6.3.2 Comparison with Standard Deviation Schedule

In this section, ERS with the Boltzmann distribution is compared with SDS,

which is a convergence schedule derived from experimental rule of genetic

algorithms. SDS is defined by

βt+1 = βt +

√
d

σ2
t

(6.29)

where σ2
t is the variance of the cost function value and d is a parameter. If

βt = 0, ERS is equivalent to SDS. The comparison is also shown in Table 6.1

For each schedule, the parameters are set as N = 200 and M = 200. For

ERS, c = 0.4, 0.2, 0.1, 0.05. Note that ∆S = log c and the parameter d of
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Figure 6.4: A typical evolution for onemax in using Boltzmann distributions.
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Figure 6.5: A typical evolution for 1D Ising in using Boltzmann distributions.

SDS corresponds to −∆S if β = 0. For SDS, d = −0.001 × log c. This is

experimentally determined so that the number of function evaluations taken

until the optimization converge becomes almost the same number.

Table 6.1: Comparison between ERS and SDS

ERS (βt+1 − βt)
2 = d

σ2
t

SDS β2
t+1 − β2

t = −∆S
σ2

t
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Figure 6.6: A typical evolution for 2D Ising in using Boltzmann distributions.

Result

Figure 6.7 shows the result. The vertical axis represents the cost function

value of the best obtained solution. The horizontal axis represents the num-

ber of function evaluations. The figure shows that both schedule are almost

equivalent in terms of the cost function value of the best obtained solution

and, however, ERS consumes slightly smaller number of function evaluations

than SDS.

6.4 Discussion

6.4.1 Numerical Calculation Error

In some ideal situations such as the onemax cases, the entropy of the target

distribution can be controlled efficiently. However, in some cases such as

the 1D and 2D Ising cases, the control of the entropy becomes difficult. If

we have an enough number of samples and enough computational time, the

numerical method for adjusting the threshold or the inverse temperature

can realize the given entropy. The results show that ERS outperforms SDS.

Hence the numerical method is enough practical and this problem of the

accuracy of the control may not be important.
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Figure 6.7: The result of standard deviation schedule and entropy reduction
schedule.

6.4.2 Linear Time Convergence

If the entropy is linearly decreased, the algorithm converge in linear time

for an exponential size of the search space. Hence, the EAPM with ERS is

designed as linear time algorithm. Unfortunately, there is no guarantee to

converge in linear time because the entropy cannot be controlled precisely

in practice. At least, in our experiments, the convergence is faster than

the theoretical evolution or the almost same. This property is useful for

predicting the convergence time.

6.4.3 Application

Actually, ERS is equivalent to the truncation selection of EDA. In the EAPM,

RPM, and HIS, ERS provides a novel method for controling the target dis-

tribution. ERS is a general convergence framework.

6.5 Summary

The entropy reduction schedule (ERS) is based on the following two as-

sumptions: (1)the target distributions are partially uniform distributions
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6.5. Summary

and (2)the probability models perfectly approximates the target distribu-

tions. Under these assumptions, this chapter have revealed the relationship

between entropy and Fisher information. As a result, we have obtained ERS.

In ERS, the entropy is decreased linearly and this means linear time

convergence for an exponential size of the search space in theory. In practice,

it is difficult to exactly realize the target distribution with a given entropy

and the linear time convergence is not guaranteed. Through experiments,

the proposed numerical method seems to work well but not perfectly and it

has been revealed that ERS outperforms standard deviation schedule.
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Chapter 7

Advanced Experimental
Analysis

7.1 Introduction

In the previous chapters, onemax function, 1D and 2D Ising models are em-

ployed for the benchmark problems. The difference among the three problems

is the number of correlations, which has an effect on the complexity of the

cost function and the target distributions. However, there are some different

types of the difficulty of optimization problems. Hence, the objective of this

chapter is to conduct experiments to reveal the comprehensive effectiveness

and property of RPM and HIS by using different types of problems.

In the following, first, this chapter approaches towards the problems of 2D

Ising with frustration. The frustration of 2D Ising has an effect of instability,

which means increasing the number of solutions which have the same cost

function value.

Second, this chapter approaches towards continuous problems. Contin-

uous problems seems to be more difficult than discrete problems. In Ising

models, undetected correlations are the difficulty. In continuous space, addi-

tionally, the complexity of each dimension can have an effect on the difficulty.
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7.2. Advanced Benchmark Problems

7.2 Advanced Benchmark Problems

7.2.1 Frustration

2D Ising model with Frustration

In 1D or 2D Ising models, the connections, which are defined by J(xi, xj) in

(4.27), can be seen as constraints and the cost function value represents the

number of satisfied connections. The frustration means existing unsatisfied

constraints in any solutions. This situation can be easily realized by changing

a part of connections J(xi, xj) to

J−(xi, xj) =

{
0 xi = xj

1 xi 6= xj
. (7.1)

In 2D Ising models without frustration, the optimum cost function value is

given by −2d, where d is the number of the dimensions. If just one connection

is changed to be J− the cost function value of the optimum solution becomes

−2d + 1. Hence, if just k% (k < 50) connections are changed to be J− and

they are independent, the cost function value of the optimum solution can

become −2d(100 − k)/100. However, if there exists some regularities, for

example, horizontal connections are J and vertical connections are J−, the

cost function value of the optimum solution becomes {−2d(100−k)/100}−α,

where α is an improvement term and its value is difficult to calculate in

general.

7.2.2 Continuous Problems

This section introduces two continuous problems.

Rosenbrock Function

Rosenbrock Function [41] is defined as follows:

f(x) =
d−1∑
i=1

(100(x2
i − xi+1)

2 + (xi − 1)2). (7.2)

If the second term is ignored, the condition of f ′(x) = 0 is x2
i = xi+1. This

feature is shown in Fig. 7.1 The property of this problem is ill-scaled, which

means each dimension is correlated to each other. This function can be seen

almost as unimodal, which means that there is no local optima.
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Rastrigin Function

Rastrigin Function is defined as follows:

f(x) = 10d +
d∑

i=1

{x2
i − 10 cos(2πxi)}. (7.3)

The feature is that there are many local optima as shown in Fig. 7.2 and,

therefore, this is quite hard problem for gradient-based methods. There is

no correlation.

7.3 Experiments on Frustration

7.3.1 Experimental Setup

Three problems are employed. One is a normal 2D Ising model. For the

others, 5% are 10% of the conncetions are changed to J−, respectively. The

number of the dimension is 400.

EDA, RPM and HIS are compared. Their parameters are determined as

follows:

• EDA

– N : 100, 500, 1000, 3000, or 6000.

– c: 0.1, 0.3, or 0.5.

• RPM

– N : 10, 50, 100, 200, 300, 400, or 500.

– M(≤ N): 10, 50, 100, 200, 300, 400, or 500.

– c: 0.01 or 0.05

• HIS

– M : 10

– L: 30

The setting of the probability models is the same as the previous chapters.

For each setting, we perform ten independent runs.
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Figure 7.1: 2D Rosenbrock Function
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7.4. Experiments on Continuous Problems
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Figure 7.3: 2D Ising with p(J−) = 0.

7.3.2 Results

The results are shown in Figs. 7.3, 7.4, and 7.5. The horizontal axis rep-

resents the number of function evaluations performed and the vertical axis

represents the cost function value of the best obtained solution. Addition-

ally, the horizontal lines in Figs. 7.4 and 7.5 show the estimated optimal cost

function values given by −2 × d × (1 − p(J−)).

The results show that the frustration cases have no serious problem since

the estimated optimal values are almost obtained. However, in 2D Ising

model with changing 10% connections, the difference between the cost func-

tion value of the obtained solutions of RPM and HIS becomes smaller than

the others.

7.4 Experiments on Continuous Problems

7.4.1 Experimental Setup

EDA, RPM and HIS are compared. Their parameters are determined as

follows:

• EDA
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Figure 7.4: 2D Ising with p(J−) = 0.05. The horizontal line is y = 800×0.95
as a lower bound of the optimal solution.
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Figure 7.5: 2D Ising with p(J−) = 0.1. The horizontal line is y = 800 × 0.9
as a lower bound of the optimal solution.
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7.4. Experiments on Continuous Problems

– M : 500, 1000 or 3000.

– c: 0.3.

• RPM

– M = N : 50, 100 or 200.

– c: 0.01.

• HIS

– M : 10 (in UG cases) or 100 (in MG cases).

– L: 20, 40 or 60.

For probability models, two types of Gaussian distributions are employed.

One is univariate Gaussian (UG), which means we assume that each dimen-

sion is independent and, hence, estimate only the diagonal elements of the

covariance matrix. Another is the normal multivariate Gaussian (MG).

The initialized region is [−10, 10]d. Additionally, we experiment the case

where the initialized region is [0, 10]d for Rastrigin function. This setting is

named shifted-Rastrigin (S-Rastrigin). The number of dimensions is 10. For

each setting, we perform ten independent runs.

7.4.2 Results

The number of successful trials in ten independent runs are shown in Figs.

7.1, 7.2, and 7.3. The success means to find a solution with cost function

value less than 10−4. The average and the standard deviation of the number

of function evaluations until convergence of EDA and RPM are shown in

Figs. 7.4 and 7.7. On the other hand, Fig. 7.9 shows the number of function

evaluations until finding global optima of HIS. Note that the HIS cases where

the global optima have not been found are ignored. The optimization task

of HIS is stopped if the number of function evaluations become more than

107. Figures 7.4, 7.7, and 7.9 show the average cost function value of the

obtained best solutions.

The results show that EDA cannot find the optima in Rosenbrock function

where as can find the optima in Rastrigin function. In S-Rastrigin, EDA

using MG cannot find the optimal solution where as EDA using UG can find.

When using UG, only RPM can find the optima in Rosenbrock function.
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7.4. Experiments on Continuous Problems

Table 7.1: The Number of Successful Trials Finding Global Optima of EDA.
M Rosenbrock Rastrigin S-Rastrigin
500 0 10 10

UG 1000 0 10 10
3000 0 10 10
500 0 10 0

MG 1000 0 10 0
3000 0 10 0

Table 7.2: The Number of Successful Trials Finding Global Optima of RPM.
N = M Rosenbrock Rastrigin

50 9 0
UG 100 10 0

200 10 1
50 10 0

MG 100 10 0
200 10 0

Table 7.3: The Number of Successful Trials Finding Global Optima of HIS.
L Rosenbrock Rastrigin S-Rastrigin
20 0 10 10

UG 40 0 10 10
60 0 10 10
20 10 5 2

MG 40 10 6 7
60 10 10 10
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7.4. Experiments on Continuous Problems

Table 7.4: The avege number of function evaluations of EDA.
M Rosenbrock Rastrigin

UG
500 1.36E+05 (1.38E+03) 1.52E+05 (7.56E+03)

1000 2.73E+05 (1.70E+03) 2.98E+05 (4.84E+03)
3000 8.21E+05 (3.60E+03) 9.02E+05 (2.32E+04)

MG
500 1.21E+05 (5.39E+03) 1.44E+05 (1.75E+03)

1000 2.38E+05 (1.76E+03) 2.90E+05 (7.50E+03)
3000 7.09E+05 (4.07E+03) 8.99E+05 (8.57E+03)

Table 7.5: The avege number of function evaluations of EDA.
M Rosenbrock Rastrigin

UG
500 8.30E+00 (2.41E-02) 7.64E-05 (1.38E-05)

1000 8.28E+00 (1.50E-02) 7.38E-05 (9.15E-06)
3000 8.25E+00 (4.27E-02) 8.22E-05 (1.07E-05)

MG
500 7.89E+00 (1.59E-01) 8.30E-05 (1.95E-05)

1000 7.98E+00 (9.23E-02) 7.88E-05 (1.20E-05)
3000 7.91E+00 (6.77E-02) 7.36E-05 (1.22E-05)

Table 7.6: The average cost function value of the obtained solutions and the
average number of function evaluations of EDA for S-Rastrigin.

M Value Num. of Evaluations

UG
500 8.36E-05 (1.44E-05) 1.79E+05 (9.67E+03)

1000 7.38E-05 (1.51E-05) 3.39E+05 (1.51E+04)
3000 8.48E-05 (1.01E-05) 9.98E+05 (1.76E+04)

MG
500 5.16E+01 (6.93E+00) 4.85E+06 (4.72E+06)

1000 4.63E+01 (4.98E+00) 3.28E+06 (4.40E+06)
3000 3.93E+01 (8.03E-01) 1.09E+06 (6.35E+04)
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7.5. Discussion

Table 7.7: The avege number of function evaluations of RPM.
M=N Rosenbrock Rastrigin

UG
50 7.93E+05 (5.31E+05) 4.72E+05 (2.53E+05)

100 1.71E+06 (6.61E+04) 2.92E+06 (2.07E+06)
200 3.88E+06 (1.56E+05) 1.60E+07 (2.56E+05)

MG
50 3.06E+05 (7.69E+03) 3.49E+05 (9.27E+04)

100 1.46E+06 (3.13E+04) 2.71E+06 (5.32E+04)
200 4.00E+06 (1.04E+05) 1.10E+07 (2.50E+05)

Table 7.8: The average cost function value of the obtained solutions of RPM.
M=N Rosenbrock Rastrigin

UG
50 2.95E+02 (8.84E+02) 1.48E+01 (1.39E+01)

100 2.31E-04 (2.70E-05) 1.67E+01 (1.63E+01)
200 1.37E-04 (1.68E-05) 2.59E+00 (1.95E+00)

MG
50 7.94E-05 (1.48E-05) 1.03E+01 (9.19E+00)

100 8.45E-05 (1.06E-05) 1.09E+01 (4.36E+00)
200 7.84E-05 (1.57E-05) 6.57E+00 (3.12E+00)

On the other hand, Rastrigin function is too difficult for RPM HIS can

find the optima both Rastrigin and S-Rastrigin if the number of the layers

is sufficiently large. In general results depend on the number of function

evaluations, that is, the convergence speed. The difference of the number of

function evaluations among the settings is not significantly large in log-scale.

7.5 Discussion

7.5.1 Robustness against Frustration

The frustration has an effect on the instability. Through experiments, it

seems that the frustration does not cause serious problems because the cost

function value of the obtained solution is near the estimated optimal cost

function value. The instability can be removed through the annealing pro-

cess.

7.5.2 Difficulty in 2D Ising Model

The difference among the thee method is reduced by adding the frustration.

This can be explained by the size of the clusters. Basically, the optimization
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7.5. Discussion

Table 7.9: The avege number of function evaluations of HIS.
L Rosenbrock Rastrigin

UG
20 1.00E+07 (0.00E+00) 2.01E+05 (5.88E+04)
40 1.00E+07 (0.00E+00) 4.23E+05 (1.84E+05)
60 1.00E+07 (0.00E+00) 5.94E+05 (1.75E+05)

MG
20 2.74E+05 (2.64E+04) 2.40E+06 (3.08E+06)
40 5.09E+05 (3.56E+04) 2.65E+06 (1.77E+06)
60 7.91E+05 (6.64E+04) 2.23E+06 (4.28E+05)

Table 7.10: The average cost function value of the obtained solutions of HIS.
L Rosenbrock Rastrigin

UG
20 4.13E+00 (8.12E-02) 8.80E-05 (1.47E-05)
40 4.07E+00 (5.05E-01) 9.05E-05 (8.98E-06)
60 7.02E+00 (6.42E-01) 8.47E-05 (1.53E-05)

MG
20 6.64E-05 (1.61E-05) 5.97E-01 (6.60E-01)
40 7.21E-05 (2.24E-05) 6.97E-01 (8.95E-01)
60 7.89E-05 (1.37E-05) 8.33E-05 (1.83E-05)

Table 7.11: The average cost function value of the obtained solutions and
the average number of function evaluations of HIS for S-Rastrigin.

L Value Num. of Evaluations

UG
20 7.35E-05 (2.66E-05) 1.93E+05 (9.52E+04)
40 8.87E-05 (1.17E-05) 4.15E+05 (1.45E+05)
60 8.96E-05 (1.12E-05) 5.40E+05 (1.47E+05)

MG
20 1.49E+00 (1.20E+00) 2.60E+05 (3.90E+06)
40 3.98E-01 (6.60E-01) 2.53E+06 (4.16E+06)
60 8.76E-05 (1.10E-05) 1.96E+06 (9.47E+05)
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7.5. Discussion

process of EAPM for 2D Ising consists of three phases. The first phase is the

transition from random to some clusters. A cluster means a set of connected

variables which have the same value. In the second phase, the clusters are

merged. In the third phase, two clusters remains and consequently one has to

be eliminated in order to obtain the optimal solution. Actually, to eliminate

a big cluster is quite difficult for EAPM. However, the frustration breaks the

large clusters.

7.5.3 RPM: Robustness against Model Error

For Rosenbrock function, RPM can find the global optima in spite of using the

inappropriate probability model, that is, UG, whereas HIS cannot in the same

condition. This shows the robustness against the model error, which means

the difference between the target distribution and the probability model.

RPM can store a part of the historical samples and this mechanism do not

depend on the probability model in theory.

7.5.4 HIS: Robustness against Local Optima

HIS works well for Rastrigin, whereas RPM do not. The reason would be the

presence of the local optima. The number of local optima around the global

optima is at least 3d −1 and RPM drops into one of them. In practice d = 5,

RPM can find the global optima.

The reason of HIS finding the global optima is preserving the best prob-

ability model. This can be understood as preserving the best obtained sam-

ples, whereas RPM may discard the best samples in order to remove the

bias. Note that HIS removes the bias according to importance sampling

with different manner from RPM.

7.5.5 Estimation Bias in EDA

In cases using MG, EDA seems to be effective for Rastrigin function. How-

ever, we have to note the bias of EDA. In importance sampling, EDA assumes

the following:
qt+1(x)

pt(x)
log p(x|w) ' qt+1(x)

qt(x)
log p(x|w), (7.4)
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7.6. Summary

Model Error Local Optima Removing Bias
EDA ? ? Bad
RPM Good Bad Good
HIS Bad Good Good

where target distributions are supposed to be partially uniform distributions.

The simple aspect is the assumption of

qt(x) = pt(x). (7.5)

This is the assumption that the statistical estimation is completely successful.

This has an effect on the variance reduction but we estimate the following

distribution:

qbias
t+1 (x) =

pt(x)

qt(x)
qt+1(x). (7.6)

This can be the reason of the failure in Rosenbrock function and S-Rastrigin

function with MG.

7.6 Summary

This chapter provides experimental results to investigate additional proper-

ties of EDA, RPM and HIS. The experiments have revealed that RPM has

the robustness against the model error and HIS has the robustness against

local optima and.
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Chapter 8

Conclusions and Future
Directions

8.1 Summary of This Thesis

This thesis has theoretically approached to establish fundamental technique

of EAPM. This thesis has focused on the importance sampling manner, which

calculates the empirical log-likelihoods with respect to the target distribu-

tion for statistical estimation, in EAPM and has improved the importance

sampling estimator in the three manners. In the following, each section sum-

marizes each improvement.

8.1.1 RPM for Model Error

The EAPM generates many samples and they are used once. Since Monte

Carlo estimator becomes improved as the number of the samples increases,

it is important to reuse the historical samples. In evolutionary algorithms, a

method to reuse the historical samples is called a population mechanism, and,

this is a fundamental problem not only in EAPM but also in evolutionary

algorithms (EAs). This thesis has provided a theoretical method, resampling

population model (RPM), for this purpose.

In employing the historical samples, the bias of the reused samples is the

problem. In the EAPM, the bias is removed by using importance sampling,

which requires the probability distribution of the samples. However, the

probability distribution of the selected historical samples is unknown.

RPM consists of the weighting and resampling procedures. The weighting
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8.1. Summary of This Thesis

is a kind of importance sampling calculation and provides a manner to mix

the current samples and a part of the historical samples. On the other

hand, the resampling can change the size of the maintained historical samples

without changing the distribution of them. RPM is an extension of the

EAPM (CE).

Through experiments, it is confirmed that PRM outperforms conventional

methods to maintain the historical samples such as the full replacement, the

elitist replacement, and the restricted tournament replacement. Addition-

ally, through experiments using Rosenbrock function, it has revealed that

especially RPM has the robustness against the model error.

8.1.2 HIS for Local Optima

The difference between the target distribution and the estimated distribu-

tion is important because the large difference means that the next generated

samples will be strongly biased and the next estimated distribution is also

different from the next target distribution. This phenomenon can be un-

derstood as dropping into local optima. In the general annealing process of

the EAPM, to correct the difference is quite difficult and the only method

is to restart after convergence, that is, the multi-starting. To overcome the

problem of the local optima, this thesis has proposed another convergence

method, hierarchical importance sampling, instead of annealing.

It can be intuitively understood that high entropy samples are effective

for escaping from local optima. Hence, this thesis has proposed hierarchical

importance samling (HIS) that generates samples with different entropies

simultaneously and calculates the empirical log-likelihood from the mixed

samples. The difficulty is to calculate the empirical log-likelihood from mixed

samples. This can be calculated via importance sampling with a mixture

distribution. This is derived simply according to the definition of importance

sampling and this implies there there can be no risk at this point. HIS is a

mathematical extension of the EAPM (CE).

Through experiments, it is confirmed that the proposed method outper-

forms EDA and surely the EAPM (CE). The point is iteratively estimating

the probability distribution towards the same target distribution with mixing

high entropy samples. This method is understood as repeating the EAPM

,that is, multi-starting, with using the information of the previous trials. Ad-

ditionally, through experiments using Rastrigin function, it has revealed that
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especially HIS has the robustness against the local optima.

8.1.3 ERS and Linear Time Convergence

To determine and control the annealing speed is a basic problem of the

EAPM. In fact, it has not been well known what the factor is. This thesis

has revealed the fundamental relationship between the entropy of the target

distribution and the Fisher information, and, consequently, has proposed a

general annealing schedule, entropy reduction schedule (ERS).

Basically, the entropy of the target distribution represents the size of the

region where samples are generated. In other words, the entropy represents

the size of the search space. In terms of the statistical estimation, the ap-

proximately optimal convergence speed is realized by lineally reducing the

entropy, and this is called ERS. If linearly reduction of the entropy is real-

ized, the algorithm converges in linear time for the number of the dimensions.

However, in practice, the numerical calculation of the entropy is not easy.

This thesis has proposed numerical calculation methods for this purpose.

Through comparison with a conventional method, standard deviation

schedule, the effectiveness of the proposed convergence schedule is confirmed.

ERS will converge in linear time in theory, but, in practice, the entropy can-

not be controlled exactly. However, experiments show that the convergence

time can be approximately estimated as linear.

8.2 Future Directions

8.2.1 HIS with RPM

The advantages of RPM and HIS are different from each other. Hence, it

is expected that a new method is obtained by combining RPM and HIS.

Actually, we can simply combine HIS with RPM. However, there exists some

problems. One is which samples should be emplyed for determining the

target distribtuions. Another is whether the simple probability model is

appropriate. In RPM, we have a part of the histrical samples and they do not

depend on the probability model. Hence, the distribution of the maintained

historical samples may be too complex. In RPM, the size of the maintained

historical samples is naturally decreased, whereas not in HIS.
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8.2.2 Constraints

In this thesis, constraints are basically out of scope. However, some problems

such as traveling salesman problems (TSP)

have constraints. Unfortunatel, the EAPM and our extensions cannot be

directly applied to TSP and also other constrained problems. Some works

[40,45] are proposed but we have not obtained sufficiently theoretical method

yet. To deal with constraints is one of the most important current problems

of EAPM.

8.2.3 Statistical Estimation

This thesis focuses not on the statistical estimation but on the Monte Carlo

framework, that is, importance sampling. However, the quality of the samples

strongly depends on the accuracy of the statistical estimation. Some methods

for EAPM are proposed [20]. However, there can remain problems such as

the control of the model complexity, that is, model selection, and learning

mixture distribution with effective computational method.

8.2.4 Evolution into Reinforcement Learning

[40] has pointed that the EAPM and the reinforcement learning, which solves

Bellman Equation with a sampling method, share the same concept, that is,

importance sampling and the annealing. Hence, the reinforcement learning

may be extended by the similar manner as our proposed extensions.

8.2.5 Killer Applications

The EAPM has been practically and theoretically developed so far. How-

ever, there remains the most important question: “ Are EAPM really better

than other methods? ” Trying to answer this question, we can understand

advantages and disadvantages of the EAPM, and subsequently we can realize

further improvements.
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Appendix A

Comparison between EDA and
the EAPM (CE)

This appendix provides experimental studies on comparisons between EDA

and the EAPM. In this appendix, the EAPM is denoted by CE. In spite of

the theoretical aspects of CE, CE does not work well in practice.

A.1 Experimental Setup

A.1.1 EDA Setting

We employ UMDA [29] as the EDA. Thus, the probability model is defined

as

p(x|w) =
i=d−1∏

i=0

p(xi|wi) (A.1)

and ML estimation is employed for building the probability models. Here, the

learning rate α is introduced. The parameter w is updated by the following

equation:

wnew = (1 − α)wold + αwML, (A.2)

where wnew, wold, wML are the new parameter, previous parameter, and ML

estimator, respectively. This mechanism affords stable estimation.

The selection operator employed is the truncation selection operator. The

truncation selection operator includes the cutoff rate parameter c, which

represents the percentage of samples that are removed. For example, if c =

0.3 and the number of generated samples is 100, then the best 70 = 100 ×
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(1 − 0.3) samples are selected and the rest are discarded. All the parameter

settings are described as follows:

• The number of generated samples in one sampling M : 100, 500, 1000,

3000, or 6000.

• Cutoff rate c: 0.1, 0.3, or 0.5.

• Learning rate α: 0.5.

These values are experimentally determined.

A.1.2 CE Setting

CE uses the same probability model and estimation method as EDA. How-

ever, instead of truncation selection, CE employs the (1−δ)-quantile method

[40], which selects the best k = M × δ samples, where M is the number

of generated samples, and removes the rest. Truncation selection and the

(1 − δ)-quantile method are basically the same: the parameter (1− δ) corre-

sponds to the cutoff rate in truncation selection. Thus, (1−δ) is referred to as

the cutoff parameter in this paper. All the parameter settings are described

as follows:

• The number of generated samples in one sampling M : 100, 500, 1000,

3000, or 6000.

• Cutoff rate c = 1 − δ: 0.3, 0.5, or 0.7.

• Learning rate α: 0.5.

These values are experimentally determined.

A.2 Results

Tables A.1, A.2, and A.3 show the results of EDA. Tables A.4, A.5, and

A.6 show the results of CE. The values in the first and second columns are

the number of generated samples per sampling and the cutoff rate value,

respectively. The third column lists the average cost function value, with

the standard deviation in parenthesis, of the best obtained solutions over ten

independent runs. The forth column lists the number of function evaluations
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Table A.1: Results of EDA for Onemax.
Samples Cutoff Best Evaluations

100 0.5 –400 (0) 8570 (148.66)
500 0.5 –400 (0) 41950 (610.33)
500 0.3 –400 (0) 64750 (512.35)

1000 0.5 –400 (0) 85200 (1326.65)
1000 0.3 –400 (0) 130200 (1400)
500 0.1 –400 (0) 159600 (2406.24)

3000 0.5 –400 (0) 260400 (3231.1)
1000 0.1 –400 (0) 314900 (4109.74)
3000 0.3 –400 (0) 391800 (4069.4)
6000 0.5 –400 (0) 523800 (7613.15)
6000 0.3 –400 (0) 792000 (8485.28)
3000 0.1 –400 (0) 945600 (5969.92)
6000 0.1 –400 (0) 1891200 (6462.2)
100 0.3 –399.9 (0.3) 13400 (275.68)
100 0.1 –395.1 (1.7) 36030 (1500.03)

Table A.2: Results of EDA for 1D Ising.
Samples Cutoff Best Evaluations

3000 0.3 –364.8 (4.02) 1114800 (62183.29)
3000 0.5 –364.4 (2.94) 788400 (54212.91)
1000 0.5 –363.8 (6.54) 228600 (22037.24)
6000 0.5 –363.6 (5.78) 1839600 (120365.44)
6000 0.3 –362.6 (4.2) 2463000 (118922.66)
3000 0.1 –360.8 (3.82) 2260200 (49060.78)
1000 0.3 –359.8 (4.33) 307800 (12064.82)
500 0.3 –358.4 (4.96) 146900 (13931.62)
500 0.5 –358 (3.9) 95700 (4648.66)

1000 0.1 –356.8 (4.21) 663200 (35312.32)
100 0.5 –354 (6.69) 13720 (570.61)
500 0.1 –352.8 (5.38) 308550 (22005.06)
100 0.3 –348.6 (4.39) 20510 (1328.5)
100 0.1 –338.2 (5.55) 45170 (6008.5)

6000 0.1 –322.4 (5.35) 2904000 (0)
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Table A.3: Results of EDA for 2D Ising.
Samples Cutoff Best Evaluations

3000 0.5 –719 (15.68) 746700 (63617.69)
6000 0.3 –714 (18.57) 2269800 (277094.14)
3000 0.3 –709.6 (8.04) 1073400 (130579.63)
1000 0.5 –706.6 (12.33) 213100 (22997.61)
6000 0.5 –705.4 (12.84) 1671000 (165043.63)
1000 0.3 –705 (8.06) 321600 (38257.55)
3000 0.1 –698.6 (15.07) 2625900 (261206.99)
500 0.5 –697 (13.89) 94800 (6021.63)
500 0.3 –694.8 (9.39) 151400 (14902.68)
500 0.1 –688.6 (17.32) 370050 (56346.45)

1000 0.1 –686 (9.34) 807500 (118196.66)
100 0.5 –680.8 (10.59) 14230 (445.08)
100 0.3 –664.4 (14.31) 22410 (1602.78)

6000 0.1 –649.8 (12.79) 2904000 (0)
100 0.1 –632.2 (12.47) 47430 (2609.23)

Table A.4: Results of CE for Onemax.
Samples Cutoff Best Evaluations

6000 0.7 –399.9 (0.3) 538800 (31269.15)
6000 0.5 –394.6 (3.56) 2835000 (207000)
3000 0.7 –380.1 (8.83) 272400 (7800)
3000 0.5 –359.2 (7.15) 2901000 (0)
1000 0.7 –339.3 (9.18) 72200 (3124.1)
500 0.7 –319.5 (4.92) 32300 (1661.32)

1000 0.5 –317.3 (8.96) 279600 (27122.68)
500 0.5 –298 (5.59) 74550 (4660.74)
100 0.7 –286.3 (4.24) 4870 (272.21)
100 0.5 –273.9 (4.87) 8120 (622.58)
500 0.3 –269.1 (7.33) 2900500 (0)

1000 0.3 –265.7 (3.13) 2901000 (0)
3000 0.3 –264.8 (1.83) 2901000 (0)
6000 0.3 –264 (1.55) 2904000 (0)
100 0.3 –254.9 (8.35) 2900100 (0)
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Table A.5: Results of CE for 1D Ising.
Samples Cutoff Best Evaluations

1000 0.7 –288.4 (7.94) 2901000 (0)
500 0.7 –287.6 (5.99) 2613250 (861750)
500 0.5 –273.2 (5.31) 2900500 (0)
100 0.7 –269.8 (6.72) 183420 (206344.9)
500 0.3 –259.2 (6.21) 2900500 (0)
100 0.5 –258.2 (8.12) 1931100 (1221777.89)

1000 0.3 –251.6 (2.5) 2901000 (0)
3000 0.5 –250.8 (2.56) 2901000 (0)
6000 0.5 –250.2 (2.27) 2904000 (0)
1000 0.5 –250 (2) 2901000 (0)
3000 0.7 –249.6 (2.65) 2901000 (0)
6000 0.3 –249.6 (1.2) 2904000 (0)
3000 0.3 –249.4 (1.8) 2901000 (0)
6000 0.7 –249.2 (1.6) 2904000 (0)
100 0.3 –246.6 (8.67) 2900100 (0)

Table A.6: Results of CE for 2D Ising.
Samples Cutoff Best Evaluations

1000 0.7 –533 (12.53) 2901000 (0)
500 0.7 –525 (14.81) 2613900 (859800)
500 0.5 –506.6 (13.97) 2900500 (0)
100 0.7 –501.2 (9) 168440 (176983.23)
500 0.3 –484.2 (16.04) 2900500 (0)
100 0.5 –480.4 (10.07) 2191050 (937454.9)
100 0.3 –473.4 (9.3) 2900100 (0)

3000 0.5 –472.8 (2.56) 2901000 (0)
3000 0.7 –472.6 (3.23) 2901000 (0)
6000 0.7 –472.4 (3.56) 2904000 (0)
6000 0.3 –472.4 (3.67) 2904000 (0)
3000 0.3 –472 (3.22) 2901000 (0)
1000 0.5 –471.4 (3.9) 2901000 (0)
6000 0.5 –471.2 (2.99) 2904000 (0)
1000 0.3 –470.8 (2.56) 2901000 (0)
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until the population converges. The convergence criterion is that the num-

ber of function evaluations is greater than 2.9e6 or the variance of the cost

function values of the generated samples is less than 1e − 20.

Clearly, the performance of CE is inferior to that of EDA, despite the fact

that CE is basically equivalent to or plausibly better than EDA. The results

show that the populations of CE do not converge well. The performance of

CE is dramatically improved in 4 by adding a population mechanism.
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Bayesian optimization algorithm. In Proceedings of the Genetic and

Evolutionary Computation Conference GECCO-99, Vol. I, pp. 525–532,

1999.

[35] Martin Pelikan, David E. Goldberg, and Fernando G. Lobo. A survey of

optimization by building and using probabilistic models. Computational

Optimization and Applications, Vol. 21, pp. 5–20, 2002.

[36] Martin Pelikan, David E. Goldberg, Jiri Ocenasek, and Simon Trebst.

Robust and scalable black-box optimization, hierarchy, and ising spin

glasses. IlliGAL Report No. 2003019, Illinois Genetic Algorithms Labo-

ratory, University of Illinois at Urbana-Champaign, Urbana, IL, 2003.

88



BIBLIOGRAPHY

[37] Martin Pelikan, Shigeyoshi Tsutsui, and Rajiv Kalapala. Dependency

trees, permutations, and quadratic assignment problem. MEDAL Re-

port No. 2007003, Missouri Estimation of Distribution Algorithms Lab-

oratory, University of Missouri, St. Louis, MO, 2007.

[38] Christian P. Robert and George Casella. Monte Carlo Statistical Meth-

ods. Springer, 2004.

[39] Reuven Y. Rubinstein. Simulation and the Monte Carlo Method. Wiley-

Interscience, 1981.

[40] Reuven Y. Rubinstein and Dirk P. Kroese. The Cross-Entropy Method.

Springer, 2004.

[41] Yun-Wei Shang and Yu-Huang Qiu. A note on the extended rosenbrock

function. Evolutionary Computation, Vol. 14, No. 1, pp. 119–126, 2006.

[42] Hidetoshi Shimodaira. Improving predictive inference under covariate

shift by weighting the log-likelihood function. Journal of Statistical Plan-

ning and Inference, Vol. 90, pp. 227–244, 2000.

[43] Hisashi Shimodaira. An empirical performance comparison of niching

methods for genetic algorithms. IEICE transactions on information and

systems, Vol. E85-D, No. 11, pp. 1872–1880, 11 2002.

[44] Thomas Weise. Global Optimization Algorithms Theory and Applica-

tion. http://www.it-weise.de/.

[45] Shigeyoshi Tsutsui. Node histogram vs. edge histogram: A compari-

son of probabilistic model-building genetic algorithms in permutation

domains. In The 2006 IEEE Congress on Evolutionary Computation

(CEC-2006), 2006.

[46] 深尾毅. 分散システム論 -熱力学的システム論-. 昭晃堂, 1987.

[47] Walter Greiner, Ludwig Neise, and Horst Stöcker. 熱力学・統計力学.
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